分析 (Ⅰ)直線l1的方程為 x-2y+c=0,根據(jù)l1過圓心(3,4),代入求出c,即可求直線l1的方程;
(Ⅱ)根據(jù)圓心在直線L:x+y-2=0上,設(shè)出圓心D坐標(biāo),而圓D與圓C外切,得到圓心距CD等于兩半徑之和,利用兩點(diǎn)間的距離公式列出關(guān)于a的方程,求出方程的解得到a的值,確定出圓心D坐標(biāo),即可確定出圓D的方程.
解答 解:(1)因?yàn)橹本l1與直線x-2y+3=0平行
設(shè)直線l1的方程為 x-2y+c=0
又因?yàn)閘1過圓心(3,4)
故有3-2×4+c=0,即c=5
所以l1的方程為:x-2y+5=0
(Ⅱ)依題意設(shè)D(a,2-a),
∵已知圓心C(3,4),r=2,且兩圓相切,
∴CD=5,即$\sqrt{(a-3)^{2}+(2-a-4)^{2}}$=5,
整理得:a2-a-6=0,即(a+2)(a-3)=0,
解得:a=-2或a=3,
∴D(3,-1)或D(-2,4),
則所求圓方程為(x-3)2+(y+1)2=9或(x+2)2+(y-4)2=9.
點(diǎn)評 此題考查了直線與圓的位置關(guān)系,圓的標(biāo)準(zhǔn)方程,以及圓的切線方程,弄清題意是解本題的關(guān)鍵.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{{2\sqrt{2}}}{5}$ | B. | $-\frac{{2\sqrt{2}}}{5}$ | C. | $\frac{{4\sqrt{2}}}{5}$ | D. | $-\frac{{4\sqrt{2}}}{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | m≥0或m<-1 | B. | m>0或m<-1 | C. | m>1或m≤0 | D. | m>1或m<0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com