【題目】兩圓x2+y2+2ax+a2﹣4=0和x2+y2﹣4by﹣1+4b2=0恰有三條公切線,若a∈R,b∈R,且ab≠0,則 的最小值為(
A.
B.
C.1
D.3

【答案】C
【解析】解:由題意可得 兩圓相外切,兩圓的標(biāo)準(zhǔn)方程分別為 (x+a)2+y2=4,x2+(y﹣2b)2=1,
圓心分別為(﹣a,0),(0,2b),半徑分別為 2和1,故有 =3,∴a2+4b2=9,
=1,∴ = + = + +
+2 =1,當(dāng)且僅當(dāng) = 時(shí),等號(hào)成立,
故選 C.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解基本不等式在最值問題中的應(yīng)用的相關(guān)知識(shí),掌握用基本不等式求最值時(shí)(積定和最小,和定積最大),要注意滿足三個(gè)條件“一正、二定、三相等”.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中

(Ⅰ)求上的單調(diào)區(qū)間;

(Ⅱ)求為自然對(duì)數(shù)的底數(shù))上的最大值;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)fx=ax2lnx.

)若fx)在x=2時(shí)有極值,求實(shí)數(shù)a的值和fx)的極大值;

)若fx)在定義域上是減函數(shù),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=ax2-(a+2)x+ln x.

(1)當(dāng)a=1時(shí),求曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程;

(2)當(dāng)a>0時(shí),若f(x)在區(qū)間[1,e]上的最小值為-2,求a的取值范圍;

(3)若對(duì)任意x1,x2(0,+∞),x1<x2,且f(x1)+2x1<f(x2)+2x2恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)f(x)=x2+bx+4
(1)若f(x)為偶函數(shù),求b的值;
(2)若f(x)有零點(diǎn),求b的取值范圍;
(3)求f(x)在區(qū)間[﹣1,1]上的最大值g(b).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為 (α為參數(shù),﹣π<α<0),曲線C2的參數(shù)方程為 (t為參數(shù)),以O(shè)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系.

(1)求曲線C1的極坐標(biāo)方程和曲線C2的普通方程;

(2射線θ=﹣ 與曲線C1的交點(diǎn)為P,與曲線C2的交點(diǎn)為Q,求線段PQ的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD所在的平面和平面互相垂直,等腰梯形中, , , , 分別為的中點(diǎn), 為底面的重心.

(Ⅰ)求證: ∥平面;

(Ⅱ)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)數(shù)列的前項(xiàng)和為,且.令.

(1)求的通項(xiàng)公式;

(2)若,且數(shù)列的前項(xiàng)和為,求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè),函數(shù).

1)證明上僅有一個(gè)零點(diǎn);

2)若曲線在點(diǎn)處的切線與軸平行,且在點(diǎn)處的切線與直線平行,(O是坐標(biāo)原點(diǎn)),證明:

查看答案和解析>>

同步練習(xí)冊(cè)答案