12.已知函數(shù)f(x)=$\left\{\begin{array}{l}{lo{g}_{2}x,(x>0)}\\{{2}^{x},(x≤0)}\end{array}\right.$,則f[f($\frac{1}{9}$)]的值是$\frac{1}{9}$.

分析 由已知得f($\frac{1}{9}$)=$lo{g}_{2}\frac{1}{9}$,從而f[f($\frac{1}{9}$)]=f($lo{g}_{2}\frac{1}{9}$),由此能求出結(jié)果.

解答 解:∵函數(shù)f(x)=$\left\{\begin{array}{l}{lo{g}_{2}x,(x>0)}\\{{2}^{x},(x≤0)}\end{array}\right.$,
∴f($\frac{1}{9}$)=$lo{g}_{2}\frac{1}{9}$,
f[f($\frac{1}{9}$)]=f($lo{g}_{2}\frac{1}{9}$)=${2}^{lo{g}_{2}\frac{1}{9}}$=$\frac{1}{9}$.
故答案為:$\frac{1}{9}$.

點評 本題考查函數(shù)值的求法,是基礎(chǔ)題,解題時要認(rèn)真審題,注意函數(shù)性質(zhì)的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.用函數(shù)單調(diào)性的定義證明f(x)=x2+1在(0,+∞)是增函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知數(shù)列{an}的前n項和為Sn,若Sn=2an-3n.
(Ⅰ)求證:數(shù)列{an+3}是等比數(shù)列,并求出數(shù)列{an}的通項an;
(Ⅱ)求數(shù)列{nan}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)=|x-a|,g(x)=x2+2ax+1(a為正常數(shù)),且函數(shù)f(x)和g(x)的圖象與y軸的交點重合.
(1)求a實數(shù)的值
(2)若h(x)=f(x)+b$\sqrt{g(x)}$(b為常數(shù))試討論函數(shù)h(x)的奇偶性;
(3)若關(guān)于x的不等式f(x)-2$\sqrt{g(x)}$>a有解,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.設(shè)集合 A={x|2<x<4},B={a<x<3a}.
(1)若A∩B≠∅,求實數(shù)a的范圍.
(2)若A∪B={x|2<x<6},求實數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.(1)已知${a^{\frac{1}{2}}}+{a^{-\frac{1}{2}}}=3$,求$\frac{{{a^2}+{a^{-\;2}}+1}}{{a+{a^{-\;1}}-1}}$的值.
(2)計算$\sqrt{(1-\sqrt{2}{)^2}}+{2^{-2}}×{(\frac{9}{16})^{-0.5}}+{2^{{{log}_2}3}}-(lg8+lg125)$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)y=f(x),若在定義域內(nèi)存在x0,使得f(-x0)=-f(x0)成立,則稱x0為函數(shù)y=f(x)的局部對稱點.
(1)若a、b∈R且a≠0,證明:函數(shù)f(x)=ax2+bx-a必有局部對稱點;
(2)若函數(shù)f(x)=2x+c在定義域[-1,2]內(nèi)有局部對稱點,求實數(shù)c的取值范圍;
(3)若函數(shù)f(x)=4x-m•2x+1+m2-3在R上有局部對稱點,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.函數(shù)y=3-$\sqrt{-{x^2}+6x-5}$的值域為[1,3].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知直線l過點P(1,2),斜率k=2
(1)寫出直線l的方程;   
(2)判斷點A(1,-2)是否在直線l上?
(3)直線n過點B(2,9)且平行于直線l,求直線n的方程;
(4)求直線l與直線n的距離.

查看答案和解析>>

同步練習(xí)冊答案