【題目】5G網(wǎng)絡(luò)是第五代移動通信網(wǎng)絡(luò),其峰值理論傳輸速度可達每8秒1GB,比4G網(wǎng)絡(luò)的傳輸速度快數(shù)百倍.舉例來說,一部1G的電影可在8秒之內(nèi)下載完成.隨著5G技術(shù)的誕生,用智能終端分享3D電影、游戲以及超高畫質(zhì)(UHD)節(jié)目的時代正向我們走來.某手機網(wǎng)絡(luò)研發(fā)公司成立一個專業(yè)技術(shù)研發(fā)團隊解決各種技術(shù)問題,其中有數(shù)學(xué)專業(yè)畢業(yè),物理專業(yè)畢業(yè),其它專業(yè)畢業(yè)的各類研發(fā)人員共計1200人.現(xiàn)在公司為提高研發(fā)水平,采用分層抽樣抽取400人按分數(shù)對工作成績進行考核,并整理得如上頻率分布直方圖(每組的頻率視為概率).
(1)從總體的1200名學(xué)生中隨機抽取1人,估計其分數(shù)小于50的概率;
(2)研發(fā)公司決定對達到某分數(shù)以上的研發(fā)人員進行獎勵,要求獎勵研發(fā)人員的人數(shù)達到30%,請你估計這個分數(shù)的值;
(3)已知樣本中有三分之二的數(shù)學(xué)專業(yè)畢業(yè)的研發(fā)人員分數(shù)不低于70分,樣本中不低于70分的數(shù)學(xué)專業(yè)畢業(yè)的研發(fā)人員人數(shù)與物理及其它專業(yè)畢業(yè)的研發(fā)人員的人數(shù)和相等,估計總體中數(shù)學(xué)專業(yè)畢業(yè)的研發(fā)人員的人數(shù).
【答案】(1)0.1;(2)77.5;(3)540人.
【解析】
(1)由題意可知,樣本中隨機抽取一人,分數(shù)小于50的概率是0.1,由此能估計總體中分數(shù)小于50的概率;
(2)根據(jù)頻率分布直方圖,第六組的頻率為0.4,第七組頻率為0.2,由此能求出這個分數(shù);
(3)樣本中不低于70分的研發(fā)人員人數(shù)為240人,從而樣本中不低于70分的數(shù)學(xué)專業(yè)畢業(yè)的研發(fā)人員為120人,樣本中有三分之二的數(shù)學(xué)專業(yè)畢業(yè)的研發(fā)人員分數(shù)不低于70分,從而樣本中的是數(shù)學(xué)專業(yè)畢業(yè)的研發(fā)人員的人數(shù)為180人,由此能估計總體中數(shù)學(xué)專業(yè)畢業(yè)的研發(fā)人員的人數(shù)
解:(1)由題意可知,樣本中隨機抽取一人,
分數(shù)小于50的概率是,
所以估計總體中分數(shù)小于50的概率0.1
(2)根據(jù)頻率分布直方圖,
第六組的頻率為0.04×10=0.4,第七組頻率為0.02×10=0.2,
此分數(shù)為
(3)因為樣本中不低于70分的研發(fā)人員人數(shù)為400×(0.4+0.2)=240人,
所以樣本中不低于70分的數(shù)學(xué)專業(yè)畢業(yè)的研發(fā)人員為120人,
又因為樣本中有三分之二的數(shù)學(xué)專業(yè)畢業(yè)的研發(fā)人員分數(shù)不低于70分,
所以樣本中的是數(shù)學(xué)專業(yè)畢業(yè)的研發(fā)人員的人數(shù)120÷=180人,
故估計總體中數(shù)學(xué)專業(yè)畢業(yè)的研發(fā)人員的人數(shù)為:1200×=540人
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當時,求該函數(shù)的最大值;
(2)是否存在實數(shù),使得該函數(shù)在閉區(qū)間上的最大值為?若存在,求出對應(yīng)的值;若不存在,試說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】
如圖,在三棱錐P—ABC中,PC⊥底面ABC,AB⊥BC,D,E分別是AB,PB的中點.
(Ⅰ)求證:DE∥平面PAC.
(Ⅱ)求證:AB⊥PB;
(Ⅲ)若PC=BC,求二面角P—AB—C的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù),,且對所有的實數(shù),等式都成立,其、、、、、、、,、.
(1)如果函數(shù),,求實數(shù)的值;
(2)設(shè)函數(shù),直接寫出滿足的兩個函數(shù);
(3)如果方程無實數(shù)解,求證:方程無實解.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從原點向圓 作兩條切線,切點分別為,,記切線,的斜率分別為,.
(Ⅰ)若圓心,求兩切線,的方程;
(Ⅱ)若,求圓心的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓: 的左右焦點分別為, ,左頂點為,上頂點為, 的面積為.
(1)求橢圓的方程;
(2)設(shè)直線: 與橢圓相交于不同的兩點, , 是線段的中點.若經(jīng)過點的直線與直線垂直于點,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若.
(1)討論的單調(diào)性;
(2)若對任意,關(guān)于的不等式在區(qū)間上恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標系中,曲線的參數(shù)方程為(為參數(shù)),直線的參數(shù)方程為(為參數(shù)).
(Ⅰ)若,求直線被曲線截得的線段的長度;
(Ⅱ)若,在曲線上求一點,使得點到直線的距離最小,并求出最小距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從某居民區(qū)隨機抽取10個家庭,獲得第個家庭的月收入(單位:千元)與月儲蓄(單位:千元)的數(shù)據(jù)資料,算得, ,
,
(1).求家庭的月儲蓄對月收入的線性回歸方程;
(2).判斷變量與之間的正相關(guān)還是負相關(guān);
(3).若該居民區(qū)某家庭月收入為7千元,預(yù)測該家庭的月儲蓄.
附:回歸直線的斜率和截距的最小二乘估計公式分別為
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com