設(shè)、分別是橢圓的左、右焦點(diǎn).
(Ⅰ)若P是該橢圓上的一個動點(diǎn),求的最大值和最小值;
(Ⅱ)是否存在過點(diǎn)A(5,0)的直線l與橢圓交于不同的兩點(diǎn)C、D,使得|F2C|=|F2D|?若存在,求直線l的方程;若不存在,請說明理由.
(Ⅰ),即點(diǎn)P為橢圓短軸端點(diǎn)時,有最小值3;
當(dāng),即點(diǎn)P為橢圓長軸端點(diǎn)時,有最大值4
(Ⅱ)不存在直線l,使得|F2C|=|F2D|
(Ⅰ)易知
設(shè)P(x,y),則
,
,即點(diǎn)P為橢圓短軸端點(diǎn)時,有最小值3;
當(dāng),即點(diǎn)P為橢圓長軸端點(diǎn)時,有最大值4
(Ⅱ)假設(shè)存在滿足條件的直線l易知點(diǎn)A(5,0)在橢圓的外部,當(dāng)直線l的斜率不存在時,直線l與橢圓無交點(diǎn),所在直線l斜率存在,設(shè)為k
直線l的方程為
由方程組
依題意
當(dāng)時,設(shè)交點(diǎn)C,CD的中點(diǎn)為R,
則
又|F2C|=|F2D|
∴20k2=20k2-4,而20k2=20k2-4不成立, 所以不存在直線,使得|F2C|=|F2D|
綜上所述,不存在直線l,使得|F2C|=|F2D|
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
設(shè)、分別是橢圓的左、右焦點(diǎn).
(1)若是該橢圓上的一個動點(diǎn),求·的最大值和最小值;
(2)設(shè)過定點(diǎn)的直線與橢圓交于不同的兩點(diǎn)、,且∠為銳角(其中為坐標(biāo)原點(diǎn)),求直線的斜率的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
設(shè)、分別是橢圓的左、右焦點(diǎn).
(1)若是該橢圓上的一個動點(diǎn),求·的最大值和最小值;
(2)設(shè)過定點(diǎn)的直線與橢圓交于不同的兩點(diǎn)、,且∠為銳角(其中為坐標(biāo)原點(diǎn)),求直線的斜率的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年甘肅省高三上學(xué)期期末考試?yán)砜茢?shù)學(xué)試卷 題型:解答題
(本題滿分12分)設(shè)、分別是橢圓的左、右焦點(diǎn).
(1)若是該橢圓上的一個動點(diǎn),求的最大值和最小值;
(2)設(shè)過定點(diǎn)的直線與橢圓交于不同的兩點(diǎn)、,且∠為銳角(其中為坐標(biāo)原點(diǎn)),求直線的斜率的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010年河北省高二第二學(xué)期期末數(shù)學(xué)(理)試題 題型:解答題
(本小題滿分12分)[來源:學(xué).科.網(wǎng)Z.X.X.K]
設(shè)、分別是橢圓的左、右焦點(diǎn).
(1)若是該橢圓上的一個動點(diǎn),求的取值范圍;
(2)設(shè)過定點(diǎn)Q(0,2)的直線與橢圓交于不同的兩點(diǎn)M、N,且∠為銳角(其中為坐標(biāo)原點(diǎn)),求直線的斜率的取值范圍.
(3)設(shè)是它的兩個頂點(diǎn),直線與AB相交于點(diǎn)D,與橢圓相交于E、F兩點(diǎn).求四邊形面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010年北京市高二上學(xué)期期中考試?yán)砜茢?shù)學(xué)卷 題型:解答題
(本題滿分14分)設(shè)、分別是橢圓的左、右焦點(diǎn),過且斜率為的直線與相交于、兩點(diǎn),且、、成等差數(shù)列.
(1)若,求的值;
(2)若,設(shè)點(diǎn)滿足,求橢圓的方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com