分析 (1)求出p即可求解拋物線方程.
(2)設(shè)lAB:x=my+t與拋物線y2=4x聯(lián)系得:y2-4my-4t=0,設(shè)A(x1,y1),B(x2,y2),利用韋達(dá)定理以及判別式通過$\overrightarrow{OA}•\overrightarrow{OB}=-4$得lAB:x=my+2,得到直線AB過定點T(2,0).
法2:設(shè)$A(\frac{{{y_1}^2}}{4},{y_1})$,$B(\frac{{{y_2}^2}}{4},{y_2})$,由$\overrightarrow{OA}•\overrightarrow{OB}=-4$,求解直線方程,然后求解定點坐標(biāo).
(3)當(dāng)t=2時,由(*)得弦長|AB|,求出|MN|,表示三角形的面積,利用函數(shù)的單調(diào)性,求解三角形面積的最值.
解答 解:(1)拋物線y2=2px(p>0)的焦點為(1,0),可得p=2,
拋物線方程為y2=4x
(2)證明:設(shè)lAB:x=my+t與拋物線y2=4x聯(lián)系得:y2-4my-4t=0
設(shè)A(x1,y1),B(x2,y2),則$\left\{{\begin{array}{l}{△>0}\\{{y_1}+{y_2}=4m}\\{{y_1}{y_2}=-4t}\end{array}}\right.$(*)
∴${x_1}{x_2}=\frac{{{y_1}^2{y_2}^2}}{16}={t^2}$,由$\overrightarrow{OA}•\overrightarrow{OB}=-4$得:x1x2+y1y2=-4即t2-4t+4=0,
∴t=2,∴l(xiāng)AB:x=my+2,故直線AB過定點T(2,0)
法2:設(shè)$A(\frac{{{y_1}^2}}{4},{y_1})$,$B(\frac{{{y_2}^2}}{4},{y_2})$,由$\overrightarrow{OA}•\overrightarrow{OB}=-4$∴$\frac{{{y_1}^2{y_2}^2}}{16}+{y_1}{y_2}=-4∴{y_1}{y_2}=-8$,
又有${k_{AB}}=\frac{4}{{{y_1}+{y_2}}}$,
∴${l_{AB}}:y-{y_1}=\frac{4}{{{y_1}+{y_2}}}(x-\frac{{{y_1}^2}}{4})$,
令y=0得$x=-\frac{{{y_1}{y_2}}}{4}=2$,
所以直線AB過定點T(2,0)
(3)當(dāng)t=2時,由(*)得:$|AB|=\sqrt{1+{m^2}}\sqrt{16{m^2}+32}$,
同理有${l_{MN}}:x=-\frac{1}{m}y+2$,從而$|MN|=\sqrt{1+\frac{1}{m^2}}\sqrt{\frac{16}{m^2}+32}$,
∴${S_{AMBN}}=\frac{1}{2}|AB|•|MN|=\frac{1}{2}$$\sqrt{1+{m^2}}\sqrt{16{m^2}+32}$$•\sqrt{1+\frac{1}{m^2}}\sqrt{\frac{16}{m^2}+32}$
=$8\sqrt{(1+{m^2})(1+\frac{1}{m^2})}•\sqrt{({m^2}+2)(\frac{1}{m^2}+2)}$
=$8\sqrt{2+({m^2}+\frac{1}{m^2})}•\sqrt{5+2({m^2}+\frac{1}{m^2})}$,
令$u={m^2}+\frac{1}{m^2}(u≥2)$,
則:${S_{AMBN}}=8\sqrt{(2+u)(5+2u)}$,
易知(2+u)(5+2u)隨著u增加單調(diào)遞增,
故當(dāng)u=2即m2=1時∴${S_{AMBN}}=8\sqrt{(2+u)(5+2u)}$min=48.
點評 本題考查拋物線方程的求法,直線與拋物線的位置關(guān)系的應(yīng)用,考查轉(zhuǎn)化思想以及計算能力.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 95 | B. | 114 | C. | 133 | D. | 152 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{34}{3}$ | B. | $\frac{16}{3}$ | C. | $\frac{34}{5}$ | D. | $\frac{16}{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (0,+∞) | B. | (-∞,$\frac{1}{4}$) | C. | ($\frac{1}{4}$,+∞) | D. | (0,$\frac{1}{4}$) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [0,1] | B. | [-1,0] | C. | (-∞,-1]∪[1,+∞) | D. | [-1,1] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com