【題目】已知函數(shù).
(1)若都是從集合中任取的一個數(shù),求函數(shù)有零點的概率;
(2)若都是從區(qū)間上任取的一個數(shù),求成立的概率.
【答案】(1)
(2)
【解析】
(1)本題是一個古典概型,試驗發(fā)生包含的事件都從0,1,2,3四個數(shù)中任取的一個數(shù)的基本事件總數(shù)為4×4個,函數(shù)有零點的條件為,即,列舉出所有事件的結果數(shù),得到概率;
(2)由題意知本題是一個幾何概型,試驗發(fā)生包含的事件可以寫出滿足的條件,滿足條件的事件也可以寫出,畫出圖形,做出兩個事件對應的圖形的面積,得到比值.
解:(1)都是從集合中任取一個數(shù)字,
∴基本事件總數(shù)個,
設事件|使函數(shù)有零點,即,
∴,
滿足條件的有:
共個基本事件,
∴,∴函數(shù)有零點的概率;
(2)∵都是從區(qū)間上任取的一個數(shù),
∴所有基本事件的區(qū)域為如圖所示正方形,
設事件|,即:,
∴,
∴包含的基本事件構成的區(qū)域為圖中陰影部分,
∴,
∴的概率為.
科目:高中數(shù)學 來源: 題型:
【題目】橢圓上一點A關于原點的對稱點為B,F(xiàn)為橢圓的右焦點,AF⊥BF,∠ABF=,,,則橢圓的離心率的取值范圍為_______.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,橢圓C:(a>b>0)的離心率為,其左焦點到點P(2,1)的距離為.不過原點O的直線l與C相交于A,B兩點,且線段AB被直線OP平分.
(Ⅰ)求橢圓C的方程;
(Ⅱ) 求ABP的面積取最大時直線l的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐中,平面,, ,,,,為側棱上一點.
(1)若,求證:平面;
(2)求證:平面平面;
(3)在側棱上是否存在點,使得平面? 若存在,求出線段的長;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列命題中,正確的命題有______.
①回歸直線恒過樣本的中心,且至少過一個樣本點;
②若,則事件與是對立事件;
③一組數(shù)據(jù)的方差一定是正數(shù);
④用系統(tǒng)抽樣法從名學生中抽取容量為的樣本,將名學生從編號,按編號順序平均分成組(號,號,……,號),若第組抽出的號碼為,則第一組中用抽簽法確定的號碼為號.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系中,曲線C:y=與直線(>0)交與M,N兩點,
(Ⅰ)當k=0時,分別求C在點M和N處的切線方程;
(Ⅱ)y軸上是否存在點P,使得當k變動時,總有∠OPM=∠OPN?說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】是定義在R上的函數(shù),對∈R都有,且當>0時,<0,且=1.
(1)求的值;
(2)求證:為奇函數(shù);
(3)求在[-2,4]上的最值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為響應國家提出的“大眾創(chuàng)業(yè),萬眾創(chuàng)新”的號召,小李同學大學畢業(yè)后,決定利用所學專業(yè)進行自主創(chuàng)業(yè)。經(jīng)過市場調(diào)查,生產(chǎn)某小型電子產(chǎn)品需投入年固定成本為5萬元,每年生產(chǎn)萬件,需另投入流動成本為萬元,且,每件產(chǎn)品售價為10元。經(jīng)市場分析,生產(chǎn)的產(chǎn)品當年能全部售完。
(1)寫出年利潤(萬元)關于年產(chǎn)量(萬件)的函數(shù)解析式;
(注:年利潤=年銷售收入-固定成本-流動成本)
(2)年產(chǎn)量為多少萬件時,小李在這一產(chǎn)品的生產(chǎn)中所獲利潤最大?最大利潤是多少?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線的頂點在原點,焦點在x軸的正半軸上,過拋物線的焦點且斜率為1的直線與拋物線交于A、B兩點,若.
(1)求拋物線的方程;
(2)若AB的中垂線交拋物線于C、D兩點,求過A、B、C、D四點的圓的方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com