1.函數(shù)f(x)=($\frac{1}{2}$)${\;}^{2x-{x}^{2}}$的單調(diào)減區(qū)間為( 。
A.(-∞,1]B.[1,+∞)C.(0,1]D.[1,2)

分析 利用換元法結合復合函數(shù)單調(diào)性的關系進行求解即可.

解答 解:f(x)=($\frac{1}{2}$)${\;}^{2x-{x}^{2}}$=${2}^{{x}^{2}-2x}$,
設t=x2-2x=(x-1)2-1,
則函數(shù)y=2t為增函數(shù),
要求f(x)=($\frac{1}{2}$)${\;}^{2x-{x}^{2}}$=${2}^{{x}^{2}-2x}$的單調(diào)減區(qū)間,
即等價為求函數(shù)t=x2-2x=(x-1)2-1的遞減區(qū)間,
∵函數(shù)t=(x-1)2-1的遞減區(qū)間是(-∞,1],
∴函數(shù)f(x)=($\frac{1}{2}$)${\;}^{2x-{x}^{2}}$的單調(diào)減區(qū)間為(-∞,1],
故選:A

點評 本題主要考查函數(shù)單調(diào)區(qū)間的求解,利用換元法結合復合函數(shù)單調(diào)性之間的關系是解決本題的關鍵.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

11.化簡$\frac{sin22°+cos45°sin23°}{cos22°-sin45°sin23°}$=1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.已知函數(shù)f(x)=e|x-m|(m為常數(shù)),若f(x)在區(qū)間[2,+∞)上是增函數(shù),則m的取值范圍是(-∞,2].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.已知集合A={x|2≤x<7},B={x|3<x≤10},C={x|a-5<x<a}.
(1)求A∩B,A∪B;
(2)若非空集合C⊆(A∪B),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.已知集合A={x∈R|log${\;}_{\frac{1}{2}}}$(x-2)≥-1},B={x∈R|$\frac{2x+6}{3-x}$≥1},則A∩B=( 。
A.[-1,3)B.[-1,3]C.D.(2,3)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.設向量$\overrightarrow a$與$\overrightarrow b$滿足|${\overrightarrow a}$|=2,$\overrightarrow b$在$\overrightarrow a$方向上的投影為1,若存在實數(shù)λ,使得$\overrightarrow a$與$\overrightarrow a$-λ$\overrightarrow b$垂直,則λ=( 。
A.3B.2C.1D.-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.給出下列從A到B的對應:
①A=N,B={0,1},對應關系是:A中的元素除以2所得的余數(shù)
②A={0,1,2},B={4,1,0},對應關系是f:x→y=x2
③A={0,1,2},B={0,1,$\frac{1}{2}$},對應關系是f:x→y=$\frac{1}{x}$
其中表示從集合A到集合B的函數(shù)有(  )個.
A.1B.2C.3D.0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.在等比數(shù)列{an}中,已知a1=1,an=a1a2a3a4a5,則n是( 。
A.9B.10C.11D.12

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.已知函數(shù)f(x)=xlnx.
(Ⅰ)求函數(shù)f(x)在[1,3]上的最小值;
(Ⅱ)若存在$x∈[\frac{1}{e},e]$使不等式2f(x)≥-x2+ax-3成立,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習冊答案