分析 (Ⅰ)利用平面BCD⊥平面ABC,證明BD⊥平面ABC,可證DB⊥AB;
(Ⅱ)利用等體積,能求出C到平面ADB的距離.
解答 (Ⅰ)證明:∵平面BCD⊥平面ABC,BD⊥BC,平面BCD∩平面ABC=BC
∴BD⊥平面ABC,
∵AB?平面ABC,
∴DB⊥AB;
(Ⅱ)解:由(I)BD⊥平面ABC,
∵S△ABC=$\frac{1}{4}×36$=9,DB=$\frac{6}{\sqrt{3}}$=2$\sqrt{3}$,
∴VD-ABC=$\frac{1}{3}×9×2\sqrt{3}$=6$\sqrt{3}$,
∵△ADB是直角三角形,AB=$\frac{6}{\sqrt{2}}$=3$\sqrt{2}$,DB=2$\sqrt{3}$,
∴S△ADB=$\frac{1}{2}×3\sqrt{2}×2\sqrt{3}$=3$\sqrt{6}$.
設點C到平面ADB的距離為h,則$\frac{1}{3}•3\sqrt{6}•h=6\sqrt{3}$,
∴h=3$\sqrt{2}$,
∴點C到平面ADB的距離為3$\sqrt{2}$.
點評 本題考查平面與平面垂直的證明,考查點到平面的距離的求法,是中檔題,正確運用等體積法是關鍵.
科目:高中數學 來源: 題型:選擇題
A. | 已知cos θ•tan θ<0,那么角θ是第三或第四象限角 | |
B. | 函數y=2cos(2x+$\frac{π}{3}$)的圖象關于x=$\frac{π}{12}$對稱 | |
C. | sin20°cos10°-cos160°sin10°=$\frac{1}{2}$ | |
D. | 函數y=|sinx|是周期函數,且周期為π |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | (3,+∞) | B. | (-1,3) | C. | [3,+∞) | D. | (-1,3] |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | {3} | B. | {0,1} | C. | {1,2,3} | D. | {0,1,3} |
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | [0,$\frac{5}{2}$] | B. | [-1,4] | C. | [-5,5] | D. | [-3,7] |
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com