9.已知函數(shù)f(x)=x-axlnx,a∈R.
(Ⅰ)當(dāng)a=1時(shí),求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)設(shè)$g(x)=\frac{f(x)}{lnx}$,若函數(shù)g(x)在(1,+∞)上為減函數(shù),求實(shí)數(shù)a的最小值;
(Ⅲ)若$?{x_0}∈[{e,{e^2}}]$,使得$f({x_0})≤\frac{1}{4}ln{x_0}$成立,求實(shí)數(shù)a的取值范圍.

分析 (Ⅰ)求出函數(shù)的導(dǎo)數(shù),解關(guān)于導(dǎo)函數(shù)的不等式,求出函數(shù)的單調(diào)區(qū)間即可;
(Ⅱ)由已知得f(x)的定義域?yàn)椋?,1)∪(1,+∞),f′(x)=-a+$\frac{lnx-1}{{(lnx)}^{2}}$在(1,+∞)上恒成立,由此利用導(dǎo)數(shù)性質(zhì)能求出a的最大值;
(Ⅲ)通過分析,問題等價(jià)于:“當(dāng)x∈[e,e2]時(shí),有g(shù)max(x)≤$\frac{1}{4}$”,結(jié)合(Ⅱ)及g′(x),分①a≥$\frac{1}{4}$、②a≤0、③0<a<$\frac{1}{4}$三種情況討論即可.

解答 解:(Ⅰ)a=1時(shí),f(x))=x-xlnx,f′(x)=-lnx,
令f′(x)>0,解得:0<x<1,令f′(x)<0,解得:x>1,
∴f(x)在(0,1)遞增,在(1,+∞)遞減;
(Ⅱ)由已知得g(x)=$\frac{x}{lnx}$-ax,函數(shù)的定義域?yàn)椋?,1)∪(1,+∞),
∵g(x)在(1,+∞)上為減函數(shù),
∴g′(x)=-a+$\frac{lnx-1}{{(lnx)}^{2}}$≤0在(1,+∞)上恒成立,
-a≤$\frac{1}{{(lnx)}^{2}}$-$\frac{1}{lnx}$=($\frac{1}{lnx}$-$\frac{1}{2}$)2-$\frac{1}{4}$,
令h(x)=($\frac{1}{lnx}$-$\frac{1}{2}$)2-$\frac{1}{4}$,
故當(dāng)$\frac{1}{lnx}$=$\frac{1}{2}$,即x=e2時(shí),
h(x)的最小值為-$\frac{1}{4}$,∴-a≤-$\frac{1}{4}$,
即a≥$\frac{1}{4}$;最小值為$\frac{1}{4}$;
(Ⅲ)若$?{x_0}∈[{e,{e^2}}]$,使得$f({x_0})≤\frac{1}{4}ln{x_0}$成立,結(jié)合(Ⅱ)得:
問題等價(jià)于:“當(dāng)x∈[e,e2]時(shí),有g(shù)max(x)≤$\frac{1}{4}$”,
∵g′(x)=-a+$\frac{lnx-1}{{(lnx)}^{2}}$,由(Ⅱ)知 $\frac{lnx-1}{{(lnx)}^{2}}$∈[0,$\frac{1}{4}$],
①當(dāng)a≥$\frac{1}{4}$時(shí),g′(x)≤0在[e,e2]上恒成立,因此f(x)在[e,e2]上為減函數(shù),
則fmax(x)=g(e)=e-ae≤$\frac{1}{4}$,故a≥1-$\frac{1}{4e}$;
②當(dāng)a≤0時(shí),g′(x)≥0在[e,e2]上恒成立,因此g(x)在[e,e2]上為增函數(shù),
則gmax(x)=g(e2)=-ae2+$\frac{{e}^{2}}{2}$≤$\frac{1}{4}$,解得:a≥$\frac{1}{2}$-$\frac{1}{{4e}^{2}}$,不合題意;
③當(dāng)0<a<$\frac{1}{4}$時(shí),由g′(x)在[e,e2]上為增函數(shù),
故g′(x) 的值域?yàn)閇g′(e),g′(e2)],即[-a,$\frac{1}{4}$-a].
由g′(x)的單調(diào)性和值域知,存在唯一x0∈(e,e2),使g′(x0)=0,且滿足:
當(dāng)x∈(e,x0),時(shí),g′(x)<0,此時(shí)g(x)為減函數(shù);
當(dāng)x∈(x0,e2),時(shí),g′(x)>0,此時(shí)g(x)為增函數(shù);
所以,gmax(x)=max{g(e)或g(e2)}與0<a<$\frac{1}{4}$矛盾,不合題意.
綜上所述,得a≥$\frac{1}{2}$-$\frac{1}{{4e}^{2}}$.

點(diǎn)評(píng) 本題考查了函數(shù)的單調(diào)性、最值問題,考查導(dǎo)數(shù)的應(yīng)用以及分類討論思想、轉(zhuǎn)化思想,是一道綜合題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.設(shè)集合A={x|x2+(a-1)x+b=0}={a},集合M={(a,b)},求集合M.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.設(shè)隨機(jī)變量X~B(2,$\frac{1}{3}$),則D($\frac{1}{2}$X+2)的值是$\frac{1}{9}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.等差數(shù)列{an}中,a20=30,d=2,求:
①a1及an;
②若Sn=190,求n.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=a(x-1)-2lnx(a∈R)
(1)當(dāng)a=1時(shí),求曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程;
(2)若函數(shù)f(x)在區(qū)間(0,1]上的最小值為0,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.如圖,AB是圓O的直徑,C是圓O上除A、B外的一點(diǎn),DC⊥平面ABC,四邊形CBED為矩形,CD=1,AB=4.
(1)求證:ED⊥平面ACD;
(2)當(dāng)三棱錐E-ADC體積取最大值時(shí),求此刻點(diǎn)C到平面ADE的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)f(x)=$\frac{1}{2}$x2-alnx(a>0).
(1)若a=2,求曲線y=f(x)在(1,f(1))處的切線方程;
(2)求函數(shù)y=f(x)在區(qū)間[1,e]上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知四面體ABCD滿足$AB=CD=\sqrt{6},AC=AD=BC=BD=2$,則四面體ABCD的外接球的表面積是7π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.如圖,圖②為圖①空間圖形的主視圖和側(cè)視圖,其中側(cè)視圖為正方形.在圖①中,設(shè)平面BEF與平面ABCD相交于直線l.
(I)求證:l⊥平面CDE;
(II)在圖①中,線段DE上是否存在點(diǎn)M,使得直線MC與平面BEF所成的角的正弦值等于$\frac{{\sqrt{5}}}{5}$?若存在,求出點(diǎn)M的位置;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案