【題目】我國(guó)古代數(shù)學(xué)著作《九章算術(shù)》有如下問題:“今有器中米,不知其數(shù),前人取半,中人三分取一,后人四分取一,余米一斗五升.問,米幾何?”如圖是解決該問題的程序框圖,執(zhí)行該程序框圖,若輸出的S=1.5(單位:升),則輸入k的值為( )
A.4.5
B.6
C.7.5
D.9
【答案】B
【解析】解:模擬程序的運(yùn)行,可得
n=1,S=k
滿足條件n<4,執(zhí)行循環(huán)體,n=2,S=k﹣ = ,
滿足條件n<4,執(zhí)行循環(huán)體,n=3,S= ﹣ = ,
滿足條件n<4,執(zhí)行循環(huán)體,n=4,S= ﹣ = ,
此時(shí),不滿足條件n<4,退出循環(huán),輸出S的值為 ,
由題意可得: =1.5,解得:k=6.
故選:B.
模擬程序的運(yùn)行,依次寫出每次循環(huán)得到的n,S的值,當(dāng)n=4時(shí),不滿足條件n<4,退出循環(huán),輸出S的值為 ,即可解得k的值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從甲、乙、丙、丁四位同學(xué)中選拔一位成績(jī)較穩(wěn)定的優(yōu)秀選手,參加山東省職業(yè)院校技能大賽,在同樣條件下經(jīng)過多輪測(cè)試,成績(jī)分析如表所示,根據(jù)表中數(shù)據(jù)判斷,最佳人選為( ) 成績(jī)分析表
甲 | 乙 | 丙 | 丁 | |
平均成績(jī) | 96 | 96 | 85 | 85 |
標(biāo)準(zhǔn)差s | 4 | 2 | 4 | 2 |
A.甲
B.乙
C.丙
D.丁
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知向量 , , ,向量 與 垂直,且 .
(1)求數(shù)列 的通項(xiàng)公式;
(2)若數(shù)列 滿足 ,求數(shù)列 的前 項(xiàng)和 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=x3﹣2ex2+mx﹣lnx,記g(x)= ,若函數(shù)g(x)至少存在一個(gè)零點(diǎn),則實(shí)數(shù)m的取值范圍是( )
A.(﹣∞,e2+ ]
B.(0,e2+ ]
C.(e2+ ,+∞]
D.(﹣e2﹣ ,e2+ ]
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) f(x)=2lnx+x2﹣ax. (Ⅰ)當(dāng)a=5時(shí),求f(x)的單調(diào)區(qū)間;
(Ⅱ)設(shè)A(x1 , y1),B(x2 , y2)是曲線y=f(x)圖象上的兩個(gè)相異的點(diǎn),若直線AB的斜率k>1恒成立,求實(shí)數(shù)a的取值范圍;
(Ⅲ)設(shè)函數(shù)f(x)有兩個(gè)極值點(diǎn)x1 , x2 , x1<x2且x2>e,若f(x1)﹣f(x2)≥m恒成立,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,a,b,c分別是角A,B,C的對(duì)邊,△ABC的面積為S,(a2+b2)tanC=8S,且sinAcosB=2cosAsinB,則cosA= .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】橢圓()的離心率是,點(diǎn)在短軸上,且。
(1)球橢圓的方程;
(2)設(shè)為坐標(biāo)原點(diǎn),過點(diǎn)的動(dòng)直線與橢圓交于兩點(diǎn)。是否存在常數(shù),使得為定值?若存在,求的值;若不存在,請(qǐng)說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知雙曲線的中心在原點(diǎn)O,左焦點(diǎn)為F1 , 圓O過點(diǎn)F1 , 且與雙曲線的一個(gè)交點(diǎn)為P,若直線PF1的斜率為 ,則雙曲線的漸近線方程為( )
A.y=±x
B.y=± x
C.y=± x
D.y=± x
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com