【題目】如圖, 、分別為直角三角形的直角邊和斜邊的中點(diǎn),沿將折起到的位置,連結(jié)、, 為的中點(diǎn).
(1)求證: 平面;(2)求證:平面平面;
(3)求證: 平面.
【答案】(1) 證明見(jiàn)解析;(2) 證明見(jiàn)解析;(3) 證明見(jiàn)解析
【解析】試題分析:
(1)欲證EP∥平面,關(guān)鍵在平面內(nèi)找一直線與平行,由E、P分別為AC、A′C的中點(diǎn),可得平行與面內(nèi)一直線;(2)欲證平面垂直平面,根據(jù)面面垂直的判定定理可知一平面經(jīng)過(guò)另一平面的垂線則這兩個(gè)面垂直;(3)欲證⊥平面,即證垂直平面內(nèi)的兩條相交直線,易證.
試題解析:(1)證明: E、P分別為AC、A′C的中點(diǎn),
EP∥A′A,又A′A平面AA′B,EP平面AA′B
∴即EP∥平面A′FB
(2) 證明:∵BC⊥AC,EF⊥A′E,EF∥BC
∴BC⊥A′E,∴BC⊥平面A′EC
BC平面A′BC
∴平面A′BC⊥平面A′EC
(3)證明:在△A′EC中,P為A′C的中點(diǎn),∴EP⊥A′C,
在△A′AC中,EP∥A′A,∴A′A⊥A′C
由(2)知:BC⊥平面A′EC 又A′A平面A′EC
∴BC⊥AA′, ∴A′A⊥平面A′BC
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】由數(shù)列中的項(xiàng)構(gòu)成新數(shù)列,,,…,,…是首項(xiàng)為1,公比為的等比數(shù)列.
(1)數(shù)列的通項(xiàng)公式;
(2)求數(shù)列的前項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn),動(dòng)點(diǎn)P 滿足:|PA|=2|PB|.
(1)若點(diǎn)P的軌跡為曲線,求此曲線的方程;
(2)若點(diǎn)Q在直線l1: x+y+3=0上,直線l2經(jīng)過(guò)點(diǎn)Q且與曲線只有一個(gè)公共點(diǎn)M,求|QM|的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,底面是平行四邊形, 為中點(diǎn), 的中點(diǎn).
證明: ;
求直線與平面所成角的正切值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】橢圓+=1的左、右焦點(diǎn)分別為F1,F(xiàn)2,一條直線經(jīng)過(guò)點(diǎn)F1與橢圓交于A,B兩點(diǎn).
(1)求△ABF2的周長(zhǎng);
(2)若的傾斜角為,求弦長(zhǎng)|AB|.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)直線與拋物線相交于不同兩點(diǎn)、,與圓相切于點(diǎn),且為線段中點(diǎn).
(1) 若是正三角形(是坐標(biāo)原點(diǎn)),求此三角形的邊長(zhǎng);
(2) 若,求直線的方程;
(3) 試對(duì)進(jìn)行討論,請(qǐng)你寫出符合條件的直線的條數(shù)(直接寫出結(jié)論).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)的定義域均為,且是奇函數(shù),是偶函數(shù),,其中為自然對(duì)數(shù)的底數(shù).
(1)求的解析式,并證明:當(dāng)時(shí),;
(2)若關(guān)于的不等式在上恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=Asin(ωx+φ),x∈R(其中A>0,ω>0,0<φ< )的圖象與x軸的交點(diǎn)中,相鄰兩個(gè)交點(diǎn)之間的距離為 ,且圖象上一個(gè)最高點(diǎn)為M( ,3).
(1)求f(x)的解析式;
(2)先把函數(shù)y=f(x)的圖象向左平移 個(gè)單位長(zhǎng)度,然后再把所得圖象上各點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來(lái)的2倍(縱坐標(biāo)不變),得到函數(shù)y=g(x)的圖象,試寫出函數(shù)y=g(x)的解析式.
(3)在(2)的條件下,若總存在x0∈[﹣ , ],使得不等式g(x0)+2≤log3m成立,求實(shí)數(shù)m的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】有甲、乙兩個(gè)班級(jí)進(jìn)行數(shù)學(xué)考試,按照大于等于85分為優(yōu)秀,85分以下為非優(yōu)秀統(tǒng)計(jì)成績(jī)后,得到如下的列聯(lián)表.
已知從全部105人中隨機(jī)抽取1人為優(yōu)秀的概率為.
(1)請(qǐng)完成上面的列聯(lián)表:若按的可靠性要求,根據(jù)列聯(lián)表的數(shù)據(jù),能否認(rèn)為“成績(jī)與班級(jí)有關(guān)系”;
(2)若按下面的方法從甲班優(yōu)秀的學(xué)生中抽取一人:把甲班優(yōu)秀的10名學(xué)生從2到11進(jìn)行編號(hào),先后兩次拋擲一枚均勻的骰子,出現(xiàn)的點(diǎn)數(shù)之和為被抽取人的序號(hào).試求抽到10號(hào)的概率.
附:
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com