【題目】如圖,在四棱錐中,底面是平行四邊形, 為中點(diǎn), 的中點(diǎn).
證明: ;
求直線與平面所成角的正切值.
【答案】(1)詳見(jiàn)解析(2)
【解析】試題分析:證明線面垂直,第一可利用線面垂直的判定定理,證明直線與平面內(nèi)的兩條相交直線垂直,進(jìn)而說(shuō)明線面垂直.求線面角有兩種方法, 一是傳統(tǒng)方法,“一作,二證,三求”,如本題的解析,關(guān)鍵是要利用尋求線面垂直,有垂線才會(huì)有垂足,垂足和斜足連線才是射影, 線面角就是斜線和射影所夾的銳角,二是建立空間直角坐標(biāo)系,借助空間向量,求法向量,利用公式求角.
試題解析:
(1)證明:∵平面,且平面,
∴
∵
∴
∴
∴
∵平面平面
∴由直線和平面垂直的判定定理知.
取中點(diǎn),連接,
由,得
∴是直線與平面所成的角,
∵的中點(diǎn),
∴
,
在中, ,
即直線與平面所成角的正切值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】隨機(jī)抽取某中學(xué)甲、乙兩班各10名同學(xué),測(cè)量他們的身高(單位:cm),獲得身高數(shù)據(jù)的莖葉圖如圖7.
(1)根據(jù)莖葉圖判斷哪個(gè)班的平均身高較高;
(2)計(jì)算甲班的樣本方差;
(3)現(xiàn)從乙班這10名同學(xué)中隨機(jī)抽取兩名身高不低于173cm的同學(xué),求身高為176cm的同學(xué)被抽中的概率。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了解某地區(qū)學(xué)生和包括老師、家長(zhǎng)在內(nèi)的社會(huì)人士對(duì)高考英語(yǔ)改革的看法,某媒體在該地區(qū)選擇了3600人調(diào)查,就是否“取消英語(yǔ)聽(tīng)力”的問(wèn)題,調(diào)查統(tǒng)計(jì)的結(jié)果如下表:
| 應(yīng)該取消 | 應(yīng)該保留 | 無(wú)所謂 | |
在校學(xué)生 | 2100人 | 120人 | y人 | |
社會(huì)人士 | 600人 | x人 | z人 |
已知在全體樣本中隨機(jī)抽取1人,抽到持“應(yīng)該保留”態(tài)度的人的概率為0.05.
(1)現(xiàn)用分層抽樣的方法在所有參與調(diào)查的人中抽取360人進(jìn)行問(wèn)卷訪談,問(wèn)應(yīng)在持“無(wú)所謂”態(tài)度的人中抽取多少人?
(2)在持“應(yīng)該保留”態(tài)度的人中,用分層抽樣的方法抽取6人平均分成兩組進(jìn)行深入交流,求第一組中在校學(xué)生人數(shù)ξ的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,已知以為圓心的圓的方程為: ,以為圓心的圓的方程為: .
(1)若過(guò)點(diǎn)的直線沿軸向左平移3個(gè)單位,沿軸向下平移4個(gè)單位后,回到原來(lái)的位置,求直線被圓截得的弦長(zhǎng);
(2)圓是以1為半徑,圓心在圓: 上移動(dòng)的動(dòng)圓 ,若圓上任意一點(diǎn)分別作圓的兩條切線,切點(diǎn)為,求的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓經(jīng)過(guò)點(diǎn),離心率為,點(diǎn)坐標(biāo)原點(diǎn).
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)過(guò)橢圓的左焦點(diǎn)任作一條不垂直于坐標(biāo)軸的直線,交橢圓于兩點(diǎn),記弦的中點(diǎn)為,過(guò)作的垂線交直線于點(diǎn),證明:點(diǎn)在一條定直線上.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知△OAB的頂點(diǎn)坐標(biāo)為O(0,0),A(2,9),B(6,﹣3),點(diǎn)P的橫坐標(biāo)為14,且 ,點(diǎn)Q是邊AB上一點(diǎn),且 .
(1)求實(shí)數(shù)λ的值與點(diǎn)P的坐標(biāo);
(2)求點(diǎn)Q的坐標(biāo);
(3)若R為線段OQ上的一個(gè)動(dòng)點(diǎn),試求 的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖, 、分別為直角三角形的直角邊和斜邊的中點(diǎn),沿將折起到的位置,連結(jié)、, 為的中點(diǎn).
(1)求證: 平面;(2)求證:平面平面;
(3)求證: 平面.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列{an},{bn}滿足a1=1,an+1=2an+1,b1=4,bn﹣bn﹣1=an+1(n≥2).
(1)求證:數(shù)列{an+1}是等比數(shù)列;
(2)求數(shù)列{an},{bn}的通項(xiàng)公式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知: 、 、 是同一平面內(nèi)的三個(gè)向量,其中 =(1,2)
(1)若| |=2 ,且 ∥ ,求 的坐標(biāo);
(2)若| |= ,且 +2 與2 ﹣ 垂直,求v與 的夾角θ.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com