【題目】中興、華為事件暴露了我國(guó)計(jì)算機(jī)行業(yè)中芯片、軟件兩大短板,為防止“卡脖子”事件的再發(fā)生,科技專業(yè)人才就成了決勝的關(guān)鍵.為了解我國(guó)在芯片、軟件方面的潛力,某調(diào)查機(jī)構(gòu)對(duì)我國(guó)若干大型科技公司進(jìn)行調(diào)查統(tǒng)計(jì),得到了這兩個(gè)行業(yè)從業(yè)者的年齡分布的餅形圖和“90后”從事這兩個(gè)行業(yè)的崗位分布雷達(dá)圖,則下列說(shuō)法中不一定正確的是( )
A.芯片、軟件行業(yè)從業(yè)者中,“90后”占總?cè)藬?shù)的比例超過(guò)50%
B.芯片、軟件行業(yè)中從事技術(shù)設(shè)計(jì)崗位的“90后”人數(shù)超過(guò)總?cè)藬?shù)的25%
C.芯片、軟件行業(yè)從事技術(shù)崗位的人中,“90后”比“80后”多
D.芯片、軟件行業(yè)中,“90后”從事市場(chǎng)崗位的人數(shù)比“80前“的總?cè)藬?shù)多
【答案】C
【解析】
根據(jù)圖表信息,整合數(shù)據(jù),逐項(xiàng)判斷即可得解.
對(duì)于選項(xiàng)A,芯片、軟件行業(yè)從業(yè)者中“90后”占總?cè)藬?shù)的55%,故選項(xiàng)A正確;
對(duì)于選項(xiàng)B,芯片、軟件行業(yè)中從事技術(shù)、設(shè)計(jì)崗位的“90后”占總?cè)藬?shù)的(37%+13%)×55%=27.5%,故選項(xiàng)B正確;
對(duì)于選項(xiàng)C,芯片、軟件行業(yè)中從事技術(shù)崗位的“90后”占總?cè)藬?shù)的37%×55%=20.35%,“80后”占總?cè)藬?shù)的40%,但從事技術(shù)的“80后”占總?cè)藬?shù)的百分比不知道,無(wú)法確定二者人數(shù)多少,故選項(xiàng)C錯(cuò)誤;
對(duì)于選項(xiàng)D,芯片、軟件行業(yè)中從事市場(chǎng)崗位的“90后”占總?cè)藬?shù)的14%×55%=7.7%、“80前”占總?cè)藬?shù)的5%,故選項(xiàng)D正確.
故選:C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知三棱柱ABC–A1B1C1的底面是正三角形,側(cè)面BB1C1C是矩形,M,N分別為BC,B1C1的中點(diǎn),P為AM上一點(diǎn).過(guò)B1C1和P的平面交AB于E,交AC于F.
(1)證明:AA1//MN,且平面A1AMN⊥平面EB1C1F;
(2)設(shè)O為△A1B1C1的中心,若AO=AB=6,AO//平面EB1C1F,且∠MPN=,求四棱錐B–EB1C1F的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖四棱錐中,底面,是邊長(zhǎng)為2的等邊三角形,且,,點(diǎn)是棱上的動(dòng)點(diǎn).
(I)求證:平面平面;
(Ⅱ)當(dāng)線段最小時(shí),求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于定義城為R的函數(shù),若滿足:①;②當(dāng),且時(shí),都有;③當(dāng)且時(shí),都有,則稱為“偏對(duì)稱函數(shù)”.下列函數(shù)是“偏對(duì)稱函數(shù)”的是( )
A.B.
C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】隨著智能手機(jī)的普及,手機(jī)計(jì)步軟件迅速流行開(kāi)來(lái),這類軟件能自動(dòng)記載每個(gè)人每日健步的步數(shù),從而為科學(xué)健身提供一定的幫助.某市工會(huì)為了解該市市民每日健步走的情況,從本市市民中隨機(jī)抽取了2000名市民(其中不超過(guò)40歲的市民恰好有1000名),利用手機(jī)計(jì)步軟件統(tǒng)計(jì)了他們某天健步的步數(shù),并將樣本數(shù)據(jù)分為,,,,,,,,九組(單位;千步),將抽取的不超過(guò)40歲的市民的樣本數(shù)據(jù)繪制成頻率分布直方圖如圖,將40歲以上的市民的樣本數(shù)據(jù)繪制成頻數(shù)分布表如下,并利用該樣本的頻率分布估計(jì)總體的概率分布.
分組(單位 千步) | |||||||||
頻數(shù) | 10 | 20 | 20 | 30 | 400 | 200 | 200 | 100 | 20 |
(1)現(xiàn)規(guī)定,日健步步數(shù)不低于13000步的為“健步達(dá)人”,填寫(xiě)下面列聯(lián)表,并根據(jù)列聯(lián)表判斷能否有99.9%的把握認(rèn)為是否為“健步達(dá)人”與年齡有關(guān);
健步達(dá)人 | 非健步達(dá)人 | 總計(jì) | |
40歲以上的市民 | |||
不超過(guò)40歲的市民 | |||
總計(jì) |
(2)利用樣本平均數(shù)和中位數(shù)估計(jì)該市不超過(guò)40歲的市民日健步步數(shù)(單位:千步)的平均數(shù)和中位數(shù);
(3)若日健步步數(shù)落在區(qū)間內(nèi),則可認(rèn)為該市民”運(yùn)動(dòng)適量”,其中,分別為樣本平均數(shù)和樣本標(biāo)準(zhǔn)差,計(jì)算可求得頻率分布直方圖中數(shù)據(jù)的標(biāo)準(zhǔn)差約為3.64.若一市民某天的健步步數(shù)為2萬(wàn)步,試判斷該市民這天是否“運(yùn)動(dòng)適量”?
參考公式:
參考數(shù)據(jù):
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】△ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,且asinBbcosA+a=bcosC+ccosB.
(1)求A;
(2)若a,點(diǎn)D在BC上,且AD⊥AC,當(dāng)△ABC的周長(zhǎng)取得最大值時(shí),求BD的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】千百年來(lái),我國(guó)勞動(dòng)人民在生產(chǎn)實(shí)踐中根據(jù)云的形狀、走向、速度、厚度、顏色等的變化,總結(jié)了豐富的“看云識(shí)天氣”的經(jīng)驗(yàn),并將這些經(jīng)驗(yàn)編成諺語(yǔ),如“天上鉤鉤云,地上雨淋淋”“日落云里走,雨在半夜后”……小波同學(xué)為了驗(yàn)證“日落云里走,雨在半夜后”,觀察了所在地區(qū)的天日落和夜晚天氣,得到如下列聯(lián)表:
夜晚天氣日落云里走 | 下雨 | 未下雨 |
出現(xiàn) | ||
未出現(xiàn) |
參考公式:.
臨界值表:
(1)根據(jù)上面的列聯(lián)表判斷能否有的把握認(rèn)為“當(dāng)晚下雨”與“‘日落云里走’出現(xiàn)”有關(guān)?
(2)小波同學(xué)為進(jìn)一步認(rèn)識(shí)其規(guī)律,對(duì)相關(guān)數(shù)據(jù)進(jìn)行分析,現(xiàn)從上述調(diào)查的“夜晚未下雨”天氣中按分層抽樣法抽取天,再?gòu)倪@天中隨機(jī)抽出天進(jìn)行數(shù)據(jù)分析,求抽到的這天中僅有天出現(xiàn)“日落云里走”的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】現(xiàn)有一副斜邊長(zhǎng)為10的直角三角板,將它們斜邊重合,若將其中一個(gè)三角板沿斜邊折起形成三棱錐,如圖所示,已知,,則三棱錐的外接球的表面積為______;該三棱錐體積的最大值為_______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)的圖象如圖所示,給出四個(gè)函數(shù):①,②,③,④,又給出四個(gè)函數(shù)的圖象,則正確的匹配方案是( ).
A.①-甲,②-乙,③-丙,④-丁B.②-甲,①-乙,③-丙,④-丙
C.①-甲,③-乙,④-丙,②-丁D.①-甲,④-乙,③-丙,②-丁
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com