【題目】在極坐標系中,曲線C的方程為 ,點 ,以極點為原點,極軸為x軸的正半軸,建立平面直角坐標系,兩坐標系中取相同的長度單位.
(1)求曲線C的直角坐標方程及點R的直角坐標;
(2)設P為曲線C上一動點,以PR為對角線的矩形PQRS的一邊垂直于極軸,求矩形PQRS周長的最小值及此時點P的直角坐標.

【答案】
(1)

解:由x=ρcosθ,y=ρsinθ,

∴曲線C的直角坐標方程為 ,點R的直角坐標為(2,2)


(2)

解:曲線C的參數(shù)方程為 為參數(shù),α∈[0,2π)),

,如圖,依題意可得:

|PQ|=2﹣cosα, ,

∴矩形周長= ,

∴當 時,周長的最小值為4,此時,點P的坐標為


【解析】(1)由極坐標轉(zhuǎn)化為直角坐標即可;(2)由參數(shù)方程,設出P的坐標,得到矩形的周長,根據(jù)三角函數(shù)的圖象和性質(zhì)即可求出最值.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知:已知函數(shù)

Ⅰ)若曲線y=f(x)在點P(2,f(2))處的切線的斜率為﹣6,求實數(shù)a;

Ⅱ)若a=1,求f(x)的極值;

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某射手射擊1次,擊中目標的概率是0.9,他連續(xù)射擊4次,且他各次射擊是否擊中目標相互之間沒有影響.有下列結(jié)論:

①他第3次擊中目標的概率是0.9; ②他恰好擊中目標3次的概率是0.93×0.1;

③他至少擊中目標1次的概率是1-0.14 ④他恰好有連續(xù)2次擊中目標的概率為3×0.93×0.1

其中正確結(jié)論的序號是______

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設拋物線C:y2=2px(p>0)的焦點為F,點M在C上,|MF|=5,若以MF為直徑的圓過點(0,2),則C的方程為(
A.y2=4x或y2=8x
B.y2=2x或y2=8x
C.y2=4x或y2=16x
D.y2=2x或y2=16x

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,直三棱柱ABC-A1B1C1中,D,E分別是ABBB1的中點.

)證明: BC1//平面A1CD;

)設AA1= AC=CB=2,AB=2,求三棱錐CA1DE的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知f(x)=xlnx﹣ax,g(x)=﹣x2﹣2.
(1)對一切x∈(0,+∞),f(x)≥g(x)恒成立,求實數(shù)a的取值范圍;
(2)當a=﹣1時,求函數(shù)f(x)在區(qū)間[m,m+3](m>0)上的最值;
(3)證明:對一切x∈(0,+∞),都有 成立.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某高校在2012年的自主招生考試成績中隨機抽取名中學生的筆試成績,按成績分組,得到的頻率分布表如表所示.

組號

分組

頻數(shù)

頻率

第1組

5

第2組

第3組

30

第4組

20

第5組

10

(1)請先求出頻率分布表中位置的相應數(shù)據(jù),再完成頻率分布直方圖;

(2)為了能選拔出最優(yōu)秀的學生,高校決定在筆試成績高的第組中用分層抽樣抽取名學生進入第二輪面試,求第3、4、5組每組各抽取多少名學生進入第二輪面試;

(3)在(2)的前提下,學校決定在名學生中隨機抽取名學生接受考官進行面試,求:第組至少有一名學生被考官面試的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在等腰梯形ABCD中, ,E,F(xiàn)分別是底邊AB,CD的中點,把四邊形BEFC沿直線EF折起,使得面BEFC⊥面ADFE,若動點P∈平面ADFE,設PB,PC與平面ADFE所成的角分別為θ1 , θ2(θ1 , θ2均不為0).若θ12 , 則動點P的軌跡為(

A.直線
B.橢圓
C.圓
D.拋物線

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在△ABC中,BC= ,∠A=60°.
(1)若cosB= ,求AC的長;
(2)若AB=2,求△ABC的面積.

查看答案和解析>>

同步練習冊答案