求關(guān)于x的方程x2+(2k-1)x+k2=0的兩個(gè)實(shí)根都大于1的充要條件.
考點(diǎn):必要條件、充分條件與充要條件的判斷
專題:簡(jiǎn)易邏輯
分析:首先,根據(jù)所給條件,得到:
△≥0
-
2k-1
2
>1
f(1)>0
,然后,求解即可.
解答: 解:∵方程x2+(2k-1)x+k2=0的兩個(gè)實(shí)根都大于1,
設(shè)函數(shù)f(x)=x2+(2k-1)x+k2
則滿足:
△≥0
-
2k-1
2
>1
f(1)>0
,
(2k-1)2-4k2≥0
2k+1<0
k2+2k>0

∴k<-2,
∴關(guān)于x的方程x2+(2k-1)x+k2=0的兩個(gè)實(shí)根都大于1的充要條件k∈(-∞,-2).
點(diǎn)評(píng):本題重點(diǎn)考查了二次函數(shù)圖象與性質(zhì)、常用邏輯用語(yǔ)等知識(shí),屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

曲線y2=|x|+1的部分圖象是( 。
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

化簡(jiǎn):)
cos2α
2cos(
π
4
+α)
sin(
π
4
+α)
•sin2(
π
4
+α)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

截至2014年11月27目,我國(guó)機(jī)動(dòng)車(chē)駕駛?cè)藬?shù)量突破3億大關(guān),年均增長(zhǎng)超過(guò)兩千萬(wàn).為了解我地區(qū)駕駛預(yù)考人員的現(xiàn)狀,選擇A,B,C三個(gè)駕校進(jìn)行調(diào)查.參加各駕?颇恳活A(yù)考人數(shù)如下:
駕校A駕校B駕校C
人數(shù)150200250
若用分層抽樣的方法從三個(gè)駕校隨機(jī)抽取24人進(jìn)行分析,他們的成績(jī)?nèi)缦拢?br />
879791929399978692989294
878999929992937670909264
(1)求三個(gè)駕校分別應(yīng)抽多少人?
(2)補(bǔ)全下面的莖葉圖,并求樣本的眾數(shù)和極差;
(3)在對(duì)數(shù)據(jù)進(jìn)一步分析時(shí),滿足|x-96.5|≤4的預(yù)考成績(jī),稱為具有M特性.在樣本中隨機(jī)抽取一人,
求此人的預(yù)考成績(jī)具有M特性的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在極坐標(biāo)系內(nèi),已知曲線C1的方程為ρ2-2ρ(cosθ-2sinθ)+4=0,以極點(diǎn)為原點(diǎn),極軸方向?yàn)閤正半軸方向,利用相同單位長(zhǎng)度建立平面直角坐標(biāo)系,曲線C2的參數(shù)方程為
5x=1-4t
5y=18+3t
(t為參數(shù)).設(shè)點(diǎn)P為曲線C2上的動(dòng)點(diǎn),過(guò)點(diǎn)P作曲線C1的兩條切線,則這兩條切線所成角余弦的最小值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列四個(gè)正方體圖形中,A、B為正方體的兩個(gè)頂點(diǎn),M、N、P分別為其所在棱的中點(diǎn),能得出△MNP為直角三角形的圖形的序號(hào)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

復(fù)數(shù)
i
2i-1
在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)位于第
 
象限.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

調(diào)查某市出租車(chē)使用年限x和該年支出維修費(fèi)用y(萬(wàn)元),得到數(shù)據(jù)如下:
使用年限x23456
維修費(fèi)用y2.23.85.56.57.0
(1)求線性回歸方程;
(2)由(1)中結(jié)論預(yù)測(cè)第10年所支出的維修費(fèi)用.
溫馨提示:線性回歸直線方程
?
y
=bx+a
中,b=
n
i=1
xiyi-n
.
x
.
y
n
i=1
xi2-n
.
x
,a=
.
y
-b
.
x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓
x2
49
+
y2
24
=1上一點(diǎn)P與橢圓的兩個(gè)焦點(diǎn)F1、F2的連線互相垂直.
(1)求離心率和準(zhǔn)線方程;
(2)求△PF1F2的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案