某射手射擊1次,擊中目標(biāo)的概率是0.9.她連續(xù)射擊4次,且各次射擊是否擊中目標(biāo)相互之間沒有影響.有下列結(jié)論:
①他第3次擊中目標(biāo)的概率是0.9;
②他恰好擊中目標(biāo)3次的概率是0.93×0.1;
③他至少擊中目標(biāo)1次的概率是1-0.14;
④他擊中目標(biāo)2次的概率是0.81.
其中正確結(jié)論的序號(hào)是
 
(寫出所有正確結(jié)論的序號(hào))
考點(diǎn):相互獨(dú)立事件的概率乘法公式,互斥事件的概率加法公式
專題:概率與統(tǒng)計(jì)
分析:由題意知射擊一次擊中目標(biāo)的概率是0.9,得到第3次擊中目標(biāo)的概率是0.9,連續(xù)射擊4次,且各次射擊是否擊中目標(biāo)相互之間沒有影響,得到是一個(gè)獨(dú)立重復(fù)試驗(yàn),根據(jù)獨(dú)立重復(fù)試驗(yàn)的公式得到恰好擊中目標(biāo)3次的概率和至少擊中目標(biāo)1次的概率,他擊中目標(biāo)的次數(shù)2次的概率是C42×0.92×(1-0.9)2=0.0488.
解答: 解:∵射擊一次擊中目標(biāo)的概率是0.9,
∴第3次擊中目標(biāo)的概率是0.9,
∴①正確,
∵連續(xù)射擊4次,且各次射擊是否擊中目標(biāo)相互之間沒有影響,
∴本題是一個(gè)獨(dú)立重復(fù)試驗(yàn),
根據(jù)獨(dú)立重復(fù)試驗(yàn)的公式得到恰好擊中目標(biāo)3次的概率是C43×0.93×0.1
∴②不正確,
∵至少擊中目標(biāo)1次的概率用對(duì)立事件表示是1-0.14
∴③正確,
他擊中目標(biāo)的次數(shù)2次的概率是C42×0.92×(1-0.9)2=0.0488,
∴④不正確,
故答案為:①③.
點(diǎn)評(píng):本題主要考查n次獨(dú)立重復(fù)試驗(yàn)中恰好發(fā)生k次的概率,以及離散型隨機(jī)變量的期望,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax3+bx2+x+1在x=1處時(shí)取得極值為0,則ab=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=sin2x+2
3
cos2x-
3
,函數(shù)g(x)=mcos(2x-
π
6
)-
3
2
m+2(m>0),若對(duì)任意x1∈[0,
π
4
],總存在x2∈[0,
π
4
],使得g(x1)=f(x2)成立,則實(shí)數(shù)m的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=x+lg
x
2-x

(1)求定義域;
(2)求f(x)+f(2-x)的值;
(3)猜想f(x)的圖象具有怎樣的對(duì)稱性,并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)θ∈(
4
,π),則關(guān)于x,y的方程
x2
sinθ
+
y2
cosθ
=1所表示的曲線為( 。
A、長(zhǎng)軸在y軸上的橢圓
B、長(zhǎng)軸在x軸上的橢圓
C、實(shí)軸在y軸上的雙曲線
D、實(shí)軸在x軸上的雙曲線

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x3-(a+b)x2+abx,這里0<a<b.
(Ⅰ)設(shè)f(x)在x=s與x=t處取得極值,其中s<t,求證:0<s<a<t<b;
(Ⅱ)設(shè)點(diǎn)A(s,f(s)),B(t,f(t)),求證:線段AB的中點(diǎn)C在曲線y=f(x)上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

4張卡片上分別寫有數(shù)字1,2,3,4,從這4張卡片中隨機(jī)抽取2張,則取出的2張卡片上的數(shù)字之和為奇數(shù)的概率為( 。
A、
1
3
B、
1
2
C、
2
3
D、
3
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)的導(dǎo)函數(shù)f′(x)=ax2+bx+c的圖象如圖,則f(x)的圖象可能是( 。
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

化簡(jiǎn):
(1)
sin(2π-α)cos(π+α)cos(
π
2
+α)cos(
11π
2
-α)
cos(π-α)sin(3π-α)sin(-π-α)sin(
2
+α)
;
(2)sin(-1071°)•sin99°+sin(-171°)•sin(-261°).

查看答案和解析>>

同步練習(xí)冊(cè)答案