3.設(shè)向量$\overrightarrow{a}$=(2,1),$\overrightarrow$=(0,-2).則與$\overrightarrow{a}$+2$\overrightarrow$垂直的向量可以是( 。
A.(3,2)B.(3,-2)C.(4,6)D.(4,-6)

分析 求出$\overrightarrow{a}$+2$\overrightarrow$=(2,-3),由此利用向量垂直的性質(zhì)能求出與$\overrightarrow{a}$+2$\overrightarrow$垂直的向量的可能結(jié)果.

解答 解:∵向量$\overrightarrow{a}$=(2,1),$\overrightarrow$=(0,-2).
∴$\overrightarrow{a}$+2$\overrightarrow$=(2,-3),
∵(2,-3)•(3,2)=6-6=0,
∴與$\overrightarrow{a}$+2$\overrightarrow$垂直的向量可以是(3,2).
故選:A.

點評 本題考查向量的坐標(biāo)運算、向量垂直等基礎(chǔ)知識,考查推理論證能力、運算求解能力,考查化歸與轉(zhuǎn)化思想,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知實數(shù)x,y滿足$\left\{\begin{array}{l}x≥0\\ y≥0\\ \frac{x}{3}+\frac{y}{4}≤1\end{array}\right.$,則$\frac{y+1}{x+1}$的取值范圍是( 。
A.$[{-\frac{1}{6},5}]$B.[1,5]C.$[{\frac{1}{4},5}]$D.[0,5]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.設(shè)x,y∈R,則“x≠1或y≠1”是“xy≠1”的( 。
A.充分不必要條件B.必要而不充分條件
C.充分必要條件D.既不充分也必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.設(shè)$\overrightarrow{a}$,$\overrightarrow$是平面上的兩個單位向量,$\overrightarrow{a}$•$\overrightarrow$=$\frac{3}{5}$.若m∈R,則|$\overrightarrow{a}$+m$\overrightarrow$|的最小值是(  )
A.$\frac{3}{4}$B.$\frac{4}{3}$C.$\frac{4}{5}$D.$\frac{5}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.設(shè)命題p:?x>0,log2x<2x+3,則¬p為( 。
A.?x>0,log2x≥2x+3B.?x>0,log2x≥2x+3C.?x>0,log2x<2x+3D.?x<0,log2x≥2x+3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.某大學(xué)為調(diào)研學(xué)生在A,B兩家餐廳用餐的滿意度,從在A,B兩家餐廳都用過餐的學(xué)生中隨機(jī)抽取了100人,每人分別對這兩家餐廳進(jìn)行評分,滿分均為60分.整理評分?jǐn)?shù)據(jù),將分?jǐn)?shù)以10為組距分成6組:[0,10),[10,20),[20,30),[30,40),[40,50),[50,60],得到A餐廳分?jǐn)?shù)的頻率分布直方圖,和B餐廳分?jǐn)?shù)的頻數(shù)分布表:
B餐廳分?jǐn)?shù)頻數(shù)分布表
分?jǐn)?shù)區(qū)間頻數(shù)
[0,10)2
[10,20)3
[20,30)5
[30,40)15
[40,50)40
[50,60]35
(Ⅰ)在抽樣的100人中,求對A餐廳評分低于30的人數(shù);
(Ⅱ)從對B餐廳評分在[0,20)范圍內(nèi)的人中隨機(jī)選出2人,求2人中恰有1人評分在[0,10)范圍內(nèi)的概率;
(Ⅲ)如果從A,B兩家餐廳中選擇一家用餐,你會選擇哪一家?說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知f'(x)=2x+m,且f(0)=0,函數(shù)f(x)的圖象在點A(1,f(1))處的切線的斜率為3,數(shù)列$\left\{{\frac{1}{f(n)}}\right\}$的前n項和為Sn,則S2017的值為(  )
A.$\frac{2017}{2018}$B.$\frac{2014}{2015}$C.$\frac{2015}{2016}$D.$\frac{2016}{2017}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù)f(x)=xlnx-$\frac{a}{2}{x^2}$-x+a(a∈R)在其定義域內(nèi)有兩個不同的極值點.
(1)求a的取值范圍;
(2)記兩個極值點分別為x1,x2,且x1<x2,已知λ>0,若不等式e1+λ<x1x2λ恒成立,求λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.函數(shù)y=cosx-cos2x,x∈[-$\frac{π}{2}$,$\frac{π}{2}$]的圖象大致為( 。
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案