14.已知函數(shù)f(x)=xlnx-$\frac{a}{2}{x^2}$-x+a(a∈R)在其定義域內(nèi)有兩個(gè)不同的極值點(diǎn).
(1)求a的取值范圍;
(2)記兩個(gè)極值點(diǎn)分別為x1,x2,且x1<x2,已知λ>0,若不等式e1+λ<x1x2λ恒成立,求λ的取值范圍.

分析 (1)由導(dǎo)數(shù)與極值的關(guān)系知可轉(zhuǎn)化為方程f′(x)=lnx-ax=0在(0,+∞)有兩個(gè)不同根;再轉(zhuǎn)化為函數(shù)y=lnx與函數(shù)y=ax的圖象在(0,+∞)上有兩個(gè)不同交點(diǎn),或轉(zhuǎn)化為函數(shù)g(x)=$\frac{lnx}{x}$與函數(shù)y=a的圖象在(0,+∞)上有兩個(gè)不同交點(diǎn);或轉(zhuǎn)化為g(x)=lnx-ax有兩個(gè)不同零點(diǎn),從而討論求解;
(2)e1+λ<${x}_{1}{{x}_{2}}^{λ}$可化為1+λ<lnx1+λlnx2,結(jié)合方程的根知1+λ<ax1+λax2=a(x1+λx2),從而可得a>$\frac{1+λ}{{x}_{1}+λ{(lán)x}_{2}}$.而a=$\frac{ln\frac{{x}_{1}}{{x}_{2}}}{{x}_{1}-{x}_{2}}$.則原式等價(jià)于$\frac{ln\frac{{x}_{1}}{{x}_{2}}}{{x}_{1}-{x}_{2}}$>$\frac{1+λ}{{x}_{1}+λ{(lán)x}_{2}}$.即ln$\frac{{x}_{1}}{{x}_{2}}$<$\frac{(1+λ)({x}_{1}-{x}_{2})}{{x}_{1}+λ{(lán)x}_{2}}$恒成立.令t=$\frac{{x}_{1}}{{x}_{2}}$,t∈(0,1),構(gòu)造函數(shù)h(t)=lnt-$\frac{(1+λ)(t-1)}{t+λ}$,從而利用導(dǎo)數(shù)化恒成立問(wèn)題為最值問(wèn)題即可.

解答 解:(1)由題意知,函數(shù)f(x)的定義域?yàn)椋?,+∞),
方程f′(x)=0在(0,+∞)有兩個(gè)不同根;
即方程lnx-ax=0在(0,+∞)有兩個(gè)不同根;
轉(zhuǎn)化為函數(shù)y=lnx與函數(shù)y=ax的圖象在(0,+∞)上有兩個(gè)不同交點(diǎn),
如圖.

可見(jiàn),若令過(guò)原點(diǎn)且切于函數(shù)y=lnx圖象的直線(xiàn)斜率為k,只須0<a<k.
令切點(diǎn)A(x0,lnx0),
故k=$y′{|}_{x={x}_{0}}$=$\frac{1}{{x}_{0}}$,又k=$\frac{ln{x}_{0}}{{x}_{0}}$,
故$\frac{1}{{x}_{0}}=\frac{ln{x}_{0}}{{x}_{0}}$,解得,x0=e,
故k=$\frac{1}{e}$,
故0<a<$\frac{1}{e}$;
(2)∵e1+λ<${x}_{1}{{x}_{2}}^{λ}$等價(jià)于1+λ<lnx1+λlnx2
由(1)可知x1,x2分別是方程lnx-ax=0的兩個(gè)根,
即lnx1=ax1,lnx2=ax2
∴原式等價(jià)于1+λ<ax1+λax2=a(x1+λx2),∵λ>0,0<x1<x2,
∴原式等價(jià)于a>$\frac{1+λ}{{x}_{1}+λ{(lán)x}_{2}}$.
又由lnx1=ax1,lnx2=ax2作差得,ln$\frac{{x}_{1}}{{x}_{2}}$=a(x1-x2),即a=$\frac{ln\frac{{x}_{1}}{{x}_{2}}}{{x}_{1}-{x}_{2}}$.
∴原式等價(jià)于$\frac{ln\frac{{x}_{1}}{{x}_{2}}}{{x}_{1}-{x}_{2}}$>$\frac{1+λ}{{x}_{1}+λ{(lán)x}_{2}}$.
∵0<x1<x2,原式恒成立,即ln$\frac{{x}_{1}}{{x}_{2}}$<$\frac{(1+λ)({x}_{1}-{x}_{2})}{{x}_{1}+λ{(lán)x}_{2}}$恒成立.
令t=$\frac{{x}_{1}}{{x}_{2}}$,t∈(0,1),
則不等式lnt<$\frac{(1+λ)(t-1)}{t+λ}$在t∈(0,1)上恒成立.
令h(t)=lnt-$\frac{(1+λ)(t-1)}{t+λ}$,
又h′(t)═$\frac{1}{t}-\frac{(1+λ)^{2}}{(t+λ)^{2}}$=$\frac{(t-1)(t-{λ}^{2})}{t(t+λ)^{2}}$,
當(dāng)λ2≥1時(shí),可見(jiàn)t∈(0,1)時(shí),h′(t)>0,
∴h(t)在t∈(0,1)上單調(diào)增,又h(1)=0,h(t)<0在t∈(0,1)恒成立,符合題意.
當(dāng)λ2<1時(shí),可見(jiàn)t∈(0,λ2)時(shí),h′(t)>0,t∈(λ2,1)時(shí)h′(t)<0,
∴h(t)在t∈(0,λ2)時(shí)單調(diào)增,在t∈(λ2,1)時(shí)單調(diào)減,又h(1)=0,
∴h(t)在t∈(0,1)上不能恒小于0,不符合題意,舍去.
綜上所述,若不等式e1+λ<${x}_{1}{{x}_{2}}^{λ}$恒成立,只須λ2≥1,又λ>0,∴λ≥1.

點(diǎn)評(píng) 本題考查了導(dǎo)數(shù)的綜合應(yīng)用及分類(lèi)討論,轉(zhuǎn)化思想,數(shù)形結(jié)合的思想方法的應(yīng)用,屬于難題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.若關(guān)于x的方程e2x+aex+1=0有解,則實(shí)數(shù)a的取值范圍是(-∞,-2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.設(shè)向量$\overrightarrow{a}$=(2,1),$\overrightarrow$=(0,-2).則與$\overrightarrow{a}$+2$\overrightarrow$垂直的向量可以是( 。
A.(3,2)B.(3,-2)C.(4,6)D.(4,-6)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.已知集合A={(x,y)|$\frac{|x|}{3}$+$\frac{|y|}{2}$≤1},B={(x,y)|$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{4}$≤1},則命題“p:(x,y)∈A”是命題“q:(x,y)∈B”的充分不必要條件.(填:“充分不必要”,“必要不充分”,“充要”,“既不充分也不必要”).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.設(shè)α∈(0,$\frac{π}{2}$),若sinα=$\frac{3}{5}$,則$\sqrt{2}cos(2α+\frac{π}{4})$=( 。
A.$\frac{7}{25}$B.$\frac{17}{25}$C.-$\frac{17}{25}$D.$\frac{31}{25}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.已知函數(shù)f(x)=x3+bx2+cx+3,其中b,c∈R,若曲線(xiàn)y=f(x)在點(diǎn)(1,f(1))處的切線(xiàn)方程為3x+y=0,則f(2)=-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知函數(shù)f(x)=$\frac{lnx}{x}$,g(x)=-x2+ax+1.
(1)求函數(shù)y=f(x)在[t,t+2](t>0)上的最大值;
(2)若函數(shù)y=x2f(x)+g(x)有兩個(gè)不同的極值點(diǎn)x1,x2(x1<x2),且x2-x1>$\frac{1}{2}$ln2,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.若實(shí)數(shù)x,y滿(mǎn)足約束條件$\left\{\begin{array}{l}x≥1\\ y≥1\\ x+y≤4\end{array}\right.$,則z=lny-lnx的最大值是ln3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知函數(shù)f(x)=(mx2-x+m)e-x(m∈R).
(Ⅰ)討論f(x)的單調(diào)性;
(Ⅱ)當(dāng)m>0時(shí),證明:不等式f(x)≤$\frac{m}{x}$在(0,1+$\frac{1}{m}$]上恒成立.

查看答案和解析>>

同步練習(xí)冊(cè)答案