已知拋物線的焦點(diǎn)為,過(guò)點(diǎn)的直線相交于兩點(diǎn),點(diǎn)關(guān)于軸的對(duì)稱點(diǎn)為.

(Ⅰ)證明:點(diǎn)在直線上;

(Ⅱ)設(shè),求的平分線與軸的交點(diǎn)坐標(biāo).

 

【答案】

(Ⅰ)解:設(shè),的方程為,

 由,

從而,.                               ………2分

直線的方程為,即,

 令,得,所以點(diǎn)在直線上.        …………6分

(Ⅱ)解:因?yàn)? 

 故,解得,                    …………9分

 所以的方程為

 又由(Ⅰ)得 ,故直線的斜率為,

因而直線的方程為.                  ……12分

設(shè)的平分線與軸的交點(diǎn)為

的距離分別為 ,,

,得,或(舍去),

所以的平分線與軸的交點(diǎn)為.

【解析】略

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年浙江省高三上學(xué)期第三次統(tǒng)練理科數(shù)學(xué)試卷(解析版) 題型:解答題

已知拋物線的焦點(diǎn)為,準(zhǔn)線為,點(diǎn)為拋物線C上的一點(diǎn),且的外接圓圓心到準(zhǔn)線的距離為

(I)求拋物線C的方程;

(II)若圓F的方程為,過(guò)點(diǎn)P作圓F的2條切線分別交軸于點(diǎn),求面積的最小值時(shí)的值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014屆海南省高二上期末考試文科數(shù)學(xué)試卷(解析版) 題型:選擇題

已知拋物線的焦點(diǎn)為,點(diǎn),在拋物線上,且, 則有    (   )

A.                   B.

C.                  D.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年浙江省臺(tái)州市高三調(diào)研考試?yán)頂?shù) 題型:選擇題

已知拋物線的焦點(diǎn)為,關(guān)于原點(diǎn)的對(duì)稱點(diǎn)為過(guò)軸的垂線交拋物線于兩點(diǎn).有下列四個(gè)命題:①必為直角三角形;②不一定為直角三角形;③直線必與拋物線相切;④直線不一定與拋物線相切.其中正確的命題是

(A)①③             (B)①④             (C)②③                 (D)②④

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011年黑龍江省高二上學(xué)期期末考試數(shù)學(xué)理卷 題型:選擇題

已知拋物線的焦點(diǎn)為F,準(zhǔn)線為,經(jīng)過(guò)F且斜率為的直線與拋物線在軸上方的部分相交于點(diǎn)A,且AK,垂足為K,則的面積是( 。

A 4     B        C       D 8

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012屆海南省高二年級(jí)第一學(xué)期期末考試?yán)砜茢?shù)學(xué)卷 題型:選擇題

已知拋物線的焦點(diǎn)為,點(diǎn)在拋物線上,且,則有( 。

A.        B.

C.      D.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案