8.已知α是第三象限角,tanα=$\frac{4}{3}$,則cosα=( 。
A.$\frac{4}{5}$B.$\frac{3}{5}$C.-$\frac{3}{5}$D.$-\frac{4}{5}$

分析 由條件利用同角三角函數(shù)的基本關(guān)系,以及三角函數(shù)在各個象限中的符號,求得cosα的值.

解答 解:∵α是第三象限角,tanα=$\frac{4}{3}$=$\frac{sinα}{cosα}$,sin2α+cos2α=1,則cosα=-$\frac{3}{5}$,
故選:C.

點評 本題主要考查同角三角函數(shù)的基本關(guān)系,以及三角函數(shù)在各個象限中的符號,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.函數(shù)y=tanx在其定義域上的奇偶性是( 。
A.奇函數(shù)B.偶函數(shù)C.既奇且偶的函數(shù)D.非奇非偶的函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.設(shè)關(guān)于x的方程x2+2(1-m)x+m2-m=0有實數(shù)解.
(1)求m的取值范圍;
(2)求兩根之積的最大值或最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.復(fù)數(shù)z=$\frac{{1-\sqrt{3}i}}{{\sqrt{3}+i}}$,復(fù)數(shù)$\overline z$是z的共軛復(fù)數(shù),則z•$\overline z$=( 。
A.1B.$\frac{1}{4}$C.$\frac{1}{2}$D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.兩個集合A,B之差記作“A-B”,定義為A-B={x|x∈A且x∉R},如果集合A={x|0<x<2},B={x|1<x<3},那么A-B={x|0<x≤1}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.設(shè)△ABC的內(nèi)角A,B,C所對的邊長分別是a,b,c,且cosB=$\frac{4}{5}$,b=2.
(1)若A=30°,求a;
(2)求△ABC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.在△ABC中,角A、B、C的對邊分別為a,b,c,且a=2,A=60°,若三角形兩解,則b的取值范圍為( 。
A.(1,2)B.(1,$\frac{2\sqrt{3}}{3}$)C.($\frac{2\sqrt{3}}{3},2$)D.(2,$\frac{4\sqrt{3}}{3}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.半徑為$\root{3}{\frac{36}{π}}$的球的體積與一個長、寬分別為6、4的長方體的體積相等,則長方體的表面積為88.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2}-1,x<1}\\{lo{g}_{a}x,x≥1}\end{array}\right.$,若f(2)=-1.
(1)求a的值.
(2)若函數(shù)g(x)=f(x)-k有三個零點,求k的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案