【題目】已知F1、F2是橢圓C:的左、右焦點,點在橢圓C上,且滿足.
(1)求橢圓C的方程;
(2)直線l:交橢圓C于A、B兩點,線段AB的垂直平分線與x軸交于點M(t,0),求mt的取值范圍.
科目:高中數(shù)學 來源: 題型:
【題目】已知△ABC的內(nèi)角A,B,C所對邊分別為a、b、c,且2acosC=2b-c.
(1)求角A的大小;
(2)若AB=3,AC邊上的中線SD的長為,求△ABC的面積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設表示不大于實數(shù)的最大整數(shù),函數(shù),若關于的方程有且只有5個解,則實數(shù)的取值范圍為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】“一本書,一碗面,一條河,一座橋”曾是蘭州的城市名片,而現(xiàn)在“蘭州馬拉松”又成為了蘭州的另一張名片,隨著全民運動健康意識的提高,馬拉松運動不僅在蘭州,而且在全國各大城市逐漸興起,參與馬拉松訓練與比賽的人口逐年增加.為此,某市對人們參加馬拉松運動的情況進行了統(tǒng)計調(diào)查.其中一項調(diào)查是調(diào)查人員從參與馬拉松運動的人中隨機抽取200人,對其每周參與馬拉松長跑訓練的天數(shù)進行統(tǒng)計,得到以下統(tǒng)計表:
平均每周進行長跑訓練天數(shù) | 不大于2天 | 3天或4天 | 不少于5天 |
人數(shù) | 30 | 130 | 40 |
若某人平均每周進行長跑訓練天數(shù)不少于5天,則稱其為“熱烈參與者”,否則稱為“非熱烈參與者”.
(1)經(jīng)調(diào)查,該市約有2萬人參與馬拉松運動,試估計其中“熱烈參與者”的人數(shù);
(2)根據(jù)上表的數(shù)據(jù),填寫下列2×2列聯(lián)表,并通過計算判斷是否能在犯錯誤的概率不超過0.01的前提下認為“熱烈參與馬拉松”與性別有關?
熱烈參與者 | 非熱烈參與者 | 合計 | |
男 | 140 | ||
女 | 55 | ||
合計 |
附:k2=(n為樣本容量)
P(k2≥k0) | 0.500 | 0.400 | 0.250 | 0.150 | 0.100 | 0.050 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓:的長軸長為4,左、右頂點分別為,經(jīng)過點的動直線與橢圓相交于不同的兩點(不與點重合).
(1)求橢圓的方程及離心率;
(2)求四邊形面積的最大值;
(3)若直線與直線相交于點,判斷點是否位于一條定直線上?若是,寫出該直線的方程. (結論不要求證明)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖四邊形ABCD為菱形,G為AC與BD交點,面平面ABCD.
(1)證明:平面BDE;
(2)若為等邊三角形,,,三棱錐的體積為,求四棱錐的側面積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知橢圓的左、右頂點為,,上、下頂點為,,記四邊形的內(nèi)切圓為.
(1)求圓的標準方程;
(2)已知圓的一條不與坐標軸平行的切線交橢圓于P,M兩點.
(i)求證:;
(ii)試探究是否為定值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知某種細菌的適宜生長溫度為10℃~25℃,為了研究該種細菌的繁殖數(shù)量(單位:個)隨溫度(單位:℃)變化的規(guī)律,收集數(shù)據(jù)如下:
溫度/℃ | 12 | 14 | 16 | 18 | 20 | 22 | 24 |
繁殖數(shù)量/個 | 20 | 25 | 33 | 27 | 51 | 112 | 194 |
對數(shù)據(jù)進行初步處理后,得到了一些統(tǒng)計量的值,如下表所示:
18 | 66 | 3.8 | 112 | 4.3 | 1428 | 20.5 |
其中,.
(1)請繪出關于的散點圖,并根據(jù)散點圖判斷與哪一個更適合作為該種細菌的繁殖數(shù)量關于溫度的回歸方程類型(給出判斷即可,不必說明理由);
(2)根據(jù)(1)的判斷結果及表格數(shù)據(jù),建立關于的回歸方程(結果精確到0.1);
(3)當溫度為25℃時,該種細菌的繁殖數(shù)量的預報值為多少?
參考公式:對于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二成估計分別為,.
參考數(shù)據(jù):.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知,分別為雙曲線的左、右焦點,點P是以為直徑的圓與C在第一象限內(nèi)的交點,若線段的中點Q在C的漸近線上,則C的兩條漸近線方程為__________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com