ax•lna=1,
1
x•lna
=1,則x=
 
考點(diǎn):函數(shù)的零點(diǎn)
專題:計(jì)算題,函數(shù)的性質(zhì)及應(yīng)用
分析:先求出a=e
1
x
,把a(bǔ)=e
1
x
代入ax•lna=1,從而求出x的值.
解答: 解:∵
1
x•lna
=1,∴l(xiāng)na=
1
x
,∴a=e
1
x

把a(bǔ)=e
1
x
代入ax•lna=1得:(e
1
x
)
x
•lne
1
x
=e•
1
x
=1,
∴x=e,
故答案為:e.
點(diǎn)評(píng):本題考查了對(duì)數(shù),指數(shù)的互化問題,是一道基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
x2-2,x∈(-∞,-2]∪[1,+∞)
-x,x∈(-2,1)
,則f[f(-
3
2
)]=( 。
A、
1
4
B、
3
2
C、-
31
16
D、-
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在正四面體OABC中,M,N分別是棱OC,BC的中點(diǎn),則直線AM,ON所成角的余弦值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=x-
a
x
的定義域?yàn)椋?,1].
(1)若函數(shù)y=f(x)在定義域上是減函數(shù),求a的取值范圍;
(2)求函數(shù)y=f(x)在x∈(0,1]上的最值.并求出函數(shù)取最值時(shí)x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

當(dāng)a b為何值時(shí),函數(shù)y=(a-b)sin2x+
a+b
2
cos2x的值恒為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)是定義在R上的奇函數(shù),且當(dāng)x≥0時(shí)有f(x)=
4x
x+4

(1)判斷函數(shù)f(x)的單調(diào)性,并求使不等式f(2m+1)+f(m2-2m-4)>0成立的實(shí)數(shù)m的取值范圍.
(2)若a、b、c分別是△ABC的三個(gè)內(nèi)角A、B、C所對(duì)的邊,△ABC面積S△ABC=
3
2
,c=f(4),A=60°,求a、b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

是否存在正整數(shù)a,使得1n+3n+(2n-1)n
e
e-1
(an)n
對(duì)一切正整數(shù)n均成立?若存在,求a的最小值,若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC中,∠BAC=90°,SA⊥面ABC,且SA=3,AB=AC=4.
(1)求SC與平面SAB所成角的余弦值;
(2)試判斷△SBC的形狀,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

雙曲線C與橢圓
x2
9
+
y2
5
=1有相同的焦點(diǎn),且與雙曲線
y2
3
-
x2
9
=1共漸近線,則雙曲線C的方程為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案