已知復(fù)數(shù)z=m(m+1)+(m2-1)i,當(dāng)實(shí)數(shù)m取什么值時(shí),
(1)復(fù)數(shù)z是實(shí)數(shù);
(2)復(fù)數(shù)z是純虛數(shù);
(3)復(fù)數(shù)z對(duì)應(yīng)的點(diǎn)位于第一、三象限的角平分線上.
考點(diǎn):復(fù)數(shù)的代數(shù)表示法及其幾何意義
專題:數(shù)系的擴(kuò)充和復(fù)數(shù)
分析:根據(jù)復(fù)數(shù)的有關(guān)概念以及復(fù)數(shù)的幾何意義,建立條件關(guān)系即可得到結(jié)論.
解答: 解:(1)若復(fù)數(shù)z是實(shí)數(shù),則由m2-1=0,得m=±1.
(2)若復(fù)數(shù)z是純虛數(shù),則由 
m(m-1)=0
m2-1≠0
,得m=0.
(3)若復(fù)數(shù)z對(duì)應(yīng)的點(diǎn)位于第一、三象限的角平分線上.
則由 m2-1=m(m-1)得m=-1.
點(diǎn)評(píng):本題主要考查復(fù)數(shù)的幾何意義,利用復(fù)數(shù)的運(yùn)算法則是解決本題的關(guān)鍵,比較基礎(chǔ).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在R上的函數(shù)f(x)是偶函數(shù),且滿足f(1+x)=f(1-x),當(dāng)x∈[-1,1]時(shí),f(x)=1-x2,若函數(shù)g(x)=log5x,則h(x)=f(x)-g(x)在區(qū)間(0,5]內(nèi)的零點(diǎn)的個(gè)數(shù)是(  )
A、2B、3C、4D、5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在等比數(shù)列{an}中,Tn為前n項(xiàng)的積,若T3=1,
T6
T3
=2,則a13a14a15的值為( 。
A、16B、12C、8D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xOy中,已知圓C1:(x+1)2+y2=1,圓C2:(x-3)2+(y-4)2=1.
(Ⅰ)判斷圓C1與圓C2的位置關(guān)系;
(Ⅱ)若動(dòng)圓C同時(shí)平分圓C1的周長、圓C2的周長,則動(dòng)圓C是否經(jīng)過定點(diǎn)?若經(jīng)過,求出定點(diǎn)的坐標(biāo);若不經(jīng)過,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

單位正方體ABCD-A1B1C1D1中,E,F(xiàn)分別是AB,BC的中點(diǎn).
(1)求證:直線AC與平面D1EF平行;
(2)求二面角D-EF-D1的正弦值;
(3)求直線AC與平面D1EF的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=(2-a)(x-1)-2lnx,g(x)=ex-x+1.(a為常數(shù),e為自然對(duì)數(shù)的底)
(1)當(dāng)a=1時(shí),求f(x)的單調(diào)區(qū)間;
(2)若函數(shù)f(x)在區(qū)間(0,
1
2
)無零點(diǎn),求a的最小值;
(3)若對(duì)任意給定的x0∈(0,1],在(0,e]上總存在兩個(gè)不同的xi(i=1,2),使得f(xi)=g(x0)成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知sinθ,cosθ是關(guān)于x的二次方程x2-(
3
-1)x+m=0,(m∈R)的兩個(gè)實(shí)數(shù)根,求:
(1)m的值;
(2)
cosθ-sinθtanθ
1-tanθ
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)
a
b
是兩個(gè)不共線的向量.
(1)若
AB
=
a
+
b
,
BC
=2
a
+8
b
CD
=3(
a
-
b
)求證:A、B、D三點(diǎn)共線;
(2)求實(shí)數(shù)k的值,使k
a
+
b
與2
a
+k
b
共線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)是定義在(-∞,0)∪(0,+∞)上的奇函數(shù),當(dāng)x∈(0,+∞)時(shí),f(x)=ax+2lnx(a∈R).
(Ⅰ)求f(x)的解析式;
(Ⅱ)是否存在負(fù)實(shí)數(shù)a,使得當(dāng)x∈[-e,0)時(shí),f(x)的最小值是4?如果存在,求出a的值;如果不存在,請(qǐng)說明理由;
(Ⅲ)對(duì)x∈D,如果函數(shù)F(x)的圖象在函數(shù)G(x)的圖象的下方(沒有公共點(diǎn)),則稱函數(shù) F(x)在D上被函數(shù)G(x)覆蓋,若函數(shù)f(x)在區(qū)間x∈(1,+∞)上被函數(shù)g(x)=x3覆蓋,求實(shí)數(shù)a的取值范圍.(注:e是自然對(duì)數(shù)的底數(shù),[ln(-x)]′=
1
x

查看答案和解析>>

同步練習(xí)冊(cè)答案