函數(shù)f(x)=x2-mx-m+3的兩個零點都大于
1
2
,則m的取值范圍是
 
考點:函數(shù)的零點與方程根的關(guān)系
專題:計算題,函數(shù)的性質(zhì)及應(yīng)用
分析:利用f(x)=x2-mx-m+3的兩個零點都大于
1
2
,可得
m2-4(-m+3)≥0
m
2
1
2
1
4
-
m
2
-m+3>0
,即可求出m的取值范圍.
解答: 解:∵f(x)=x2-mx-m+3的兩個零點都大于
1
2
,
m2-4(-m+3)≥0
m
2
1
2
1
4
-
m
2
-m+3>0
,
∴m∈[2,
13
6
).
故答案為[2,
13
6
).
點評:本題考查函數(shù)的零點與方程根的關(guān)系,考查學(xué)生的計算能力,比較基礎(chǔ).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)M是含有n個正整數(shù)的集合,如果M中沒有一個元素是M中另外兩個不同元素之和,則稱集合M是n級好集合.
(Ⅰ)判斷集合{1,3,5,7,9}是否是5級好集合,并說明理由;
(Ⅱ)給定正整數(shù)a,設(shè)集合M={a,a+1,a+2,…,a+k}是好集合,其中k為正整數(shù),試求k的最大值,并說明理由;
(Ⅲ)對于任意n級好集合M,求集合M中最大元素的最小值(用n表示).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知關(guān)于x的不等式(2a+b)x+a-5b>0的解集為x>3,求不等式ax+b<0的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)二次函數(shù)f(x)=ax2+bx+c,方程f(x)=x的解集為集合A.
(1)若A={1,2},且f(0)=2,求f(x);
(2)若A={1},且a≥1,求f(x)在區(qū)間[-2,2]上的最大值(用a表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知一次函數(shù)f(x)滿足f(1)=2,f(3)=0,則f(x)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的左焦點為F,離心率為
3
3
,過點F且與x軸垂直的直線被橢圓截得的線段長為
4
3
3

(1)求橢圓的方程;
(2)設(shè)A,B分別為橢圓的左右頂點過點F且斜率為k的直線與橢圓交于C,D兩點,若
AC
DB
+
AD
CB
=8,求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a、b、x、y均為正實數(shù),且
1
a
1
b
,x>y.求證:
x
x+a
y
y+b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)x1、x2是方程lg2x+algx+b=0的兩個根,求x1•x2的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列正確命題的序號是
 

(1)等比數(shù)列1,a,a2,a3,…(a≠0)的前n項Sn=
1-an
1-a

(2)設(shè){an}( n∈N)是等差數(shù)列,Sn是其前n項和,S5<S6,S6=S7>S8則S6與S7均為Sn的最大值
(3)等比數(shù)列{an}中,若a1<a2<a3,則數(shù)列{an}是遞增數(shù)列
(4)若a,b,c是等比數(shù)列,則lga,lgb,lgc是等差數(shù)列.

查看答案和解析>>

同步練習(xí)冊答案