【題目】(本題滿分16分)已知函數(shù),

1)若函數(shù)上單調(diào)遞增,求實(shí)數(shù)的取值范圍;

2)若直線是函數(shù)圖象的切線,求的最小值;

3)當(dāng)時(shí),若的圖象有兩個(gè)交點(diǎn),求證: .(取,取,取

【答案】12.(3)詳見(jiàn)解析

【解析】試題分析:(1)由題意得對(duì), 恒成立,即,,2)設(shè)切點(diǎn),由導(dǎo)數(shù)幾何意義得, ,令,則,問(wèn)題就轉(zhuǎn)化為利用導(dǎo)數(shù)求最值:由得當(dāng)時(shí) , , 上單調(diào)遞減;當(dāng)時(shí), , 上單調(diào)遞增,,故的最小值為.(3)本題較難,難點(diǎn)在于構(gòu)造函數(shù).先根據(jù)等量關(guān)系消去參數(shù)a:由題意知, ,兩式相加得,兩式相減得,即,

,即,為研究等式右邊范圍構(gòu)造函數(shù),易得上單調(diào)遞增,因此當(dāng)時(shí),有,所以,再利用基本不等式進(jìn)行放縮: ,

,再一次構(gòu)造函數(shù),易得其在上單調(diào)遞增,而,因此,即

試題解析:解:(1 ,,

上單調(diào)遞增,對(duì),都有,

即對(duì),都有,,

故實(shí)數(shù)的取值范圍是4

2)設(shè)切點(diǎn),則切線方程為,

,亦即,

,由題意得7

,則

當(dāng)時(shí) , 上單調(diào)遞減;

當(dāng)時(shí), , 上單調(diào)遞增,

,故的最小值為10

3)由題意知, ,

兩式相加得,兩式相減得,

,

12

不妨令,記,令,則,

上單調(diào)遞增,則,

,則,,

,

,即,

,則時(shí), 上單調(diào)遞增,

,

,則,即

16

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知等比數(shù)列{an}的公比q≠1,則下面說(shuō)法中不正確的是(
A.{an+2+an}是等比數(shù)列
B.對(duì)于k∈N* , k>1,ak1+ak+1≠2ak
C.對(duì)于n∈N* , 都有anan+2>0
D.若a2>a1 , 則對(duì)于任意n∈N* , 都有an+1>an

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知A(x1 , f(x1),B(x2 , f(x2))是函數(shù)f(x)=2sin(ωx+φ)(ω>0,﹣ <φ<0)圖象上的任意兩點(diǎn),且初相φ的終邊經(jīng)過(guò)點(diǎn)P(1,﹣ ),若|f(x1)﹣f(x2)|=4時(shí),|x1﹣x2|的最小值為
(1)求函數(shù)f(x)的解析式;
(2)當(dāng)x∈[0, ]時(shí),求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(3)當(dāng)x∈[0, ]時(shí),不等式mf(x)+2m≥f(x)恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知p:方程x2+mx+1=0有兩個(gè)不等的負(fù)根;q:方程4x2+4(m﹣2)x+1=0無(wú)實(shí)根,若“p或q”真“p且q”為假,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2014年推出一種新型家用轎車,購(gòu)買時(shí)費(fèi)用為14.4萬(wàn)元,每年應(yīng)交付保險(xiǎn)費(fèi)、養(yǎng)路費(fèi)及汽車油費(fèi)共0.7萬(wàn)元,
汽車維修費(fèi)為:第一年無(wú)維修費(fèi)用,第二年為0.2萬(wàn)元,從第三年起,每年的維修費(fèi)用均比上一年增加0.2萬(wàn)元
(1)設(shè)該輛轎車使用n年的總費(fèi)用(包括購(gòu)買費(fèi)用,保險(xiǎn)費(fèi),養(yǎng)路費(fèi),汽車費(fèi)及維修費(fèi))為f(n),求f(n)的表達(dá)式.
(2)這種汽車使用多少年報(bào)廢最合算(即該車使用多少年,年平均費(fèi)用最少)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在數(shù)列{an}中,a1=1,an+1=(1+ )an+
(1)設(shè)bn= ,求數(shù)列{bn}的通項(xiàng)公式;
(2)求數(shù)列{an}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=x(lnx﹣ax)有兩個(gè)極值點(diǎn),則實(shí)數(shù)a的取值范圍是(
A.(﹣∞,0)
B.(0,
C.(0,1)
D.(0,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】四棱錐P﹣ABCD中,底面ABCD是邊長(zhǎng)為2的菱形,側(cè)面PAD⊥底面ABCD,∠BCD=60°,PA=PD= ,E是BC中點(diǎn),點(diǎn)Q在側(cè)棱PC上.
(1)求證:AD⊥PB;
(2)若Q是PC中點(diǎn),求二面角E﹣DQ﹣C的余弦值;
(3)若 ,當(dāng)PA∥平面DEQ時(shí),求λ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓E: =1(a>b>0)過(guò)點(diǎn)(1, ),左右焦點(diǎn)為F1、F2 , 右頂點(diǎn)為A,上頂點(diǎn)為B,且|AB|= |F1F2|.
(1)求橢圓E的方程;
(2)直線l:y=﹣x+m與橢圓E交于C、D兩點(diǎn),與以F1、F2為直徑的圓交于M、N兩點(diǎn),且 = ,求m的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案