已知函數(shù)y=
1
x2

(1)試判斷它在(0,+∞)有怎樣的單調(diào)性;在(-∞,0)呢?
(2)試畫出它的圖象,并說明有怎樣的對稱性?
考點:函數(shù)單調(diào)性的判斷與證明,函數(shù)的圖象
專題:函數(shù)的性質(zhì)及應(yīng)用,導(dǎo)數(shù)的綜合應(yīng)用
分析:(1)求y′,判斷y′在(0,+∞)和(-∞,0)上的符號,從而判斷函數(shù)在(0,+∞),(-∞,0)的單調(diào)性;
(2)通過列表,描點分別畫出函數(shù)在(0,+∞),和∞(-∞,0)上的圖象,根據(jù)圖象說明其對稱性即可.
解答: 解:(1)y′=-
2
x3

∴x∈(0,+∞)時,y′<0;
∴函數(shù)y=
1
x2
在(0,+∞)單調(diào)遞減;
x∈(-∞,0)時,y′>0,y=
1
x2
在(-∞,0)上單調(diào)遞增;
(2)畫該函數(shù)的圖象:
列表:
 
x
±
1
3
±
1
2
 
±1
 
±2
 
±3
 
y=
1
x2
 
9
 
4
 
1
 
   
1
4
 
  
1
9
                                               
根據(jù)所畫圖象看出,圖象關(guān)于y軸對稱.
點評:考查通過判斷函數(shù)導(dǎo)數(shù)符號來判斷函數(shù)在一區(qū)間上的單調(diào)性的方法,列表描點畫函數(shù)圖象的方法,圖象的對稱性.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)直線l∥平面α,若兩直線夾在l與α間的線段相等,則此兩條直線必(  )
A、平行B、相交
C、異面D、平行、相交或異面

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若[-1,1]⊆{x||x2-tx+t|≤1},則實數(shù)t的取值范圍是(  )
A、[-1,0]
B、[2-2
2
,0]
C、(-∞,-2]
D、[2-2
2
,2+2
2
]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知條件p:x=2,條件q:(x-2)(x-3)=0,則p是q的( 。
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、既不充分也不必要的條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2+abx+a+2b.且a、b均為非負數(shù),若f(0)=4,則f(1)的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x|x-2m|,設(shè)-2<m<0,記f1(x)=f(x),fk+1(x)=f(fk(x))(k∈N*),則函數(shù)y=f2014(x)的零點個數(shù)為(  )
A、2B、3
C、2014D、2015

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
a
a2-1
•(ax-a-x)(a>0且a≠1),討論f(x)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
ax+b
1+x2
是定義在(-1,1)上的奇函數(shù),且f(
1
3
)=
3
5

(1)確定函數(shù)f(x)的解析式;
(2)用定義證明f(x)在(-1,1)上是增函數(shù);
(3)解不等式f(t-1)+f(2t)<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某花店每天以每枝5元的價格從農(nóng)場購進若干枝玫瑰花,然后以每枝10元的價格出售,如果當天賣不完,剩下的玫瑰花作垃圾處理.
(Ⅰ)若花店一天購進17枝玫瑰花,求當天的利潤y(單位:元)關(guān)于當天需求量n(單位:枝,n∈N)的函數(shù)解析式;
(Ⅱ)花店記錄了100天玫瑰花的日需求量(單位:枝),整理得下表:
日需求量14151617181920
頻數(shù)10201616151310
若花店一天購進17枝玫瑰花,以100天記錄的各需求量的頻率作為各需求量發(fā)生的概率,求當天的利潤X(單位:元)的分布列與數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊答案