【題目】對于定義在上的函數(shù),若存在距離為的兩條直線和,使得對任意的都有,則稱函數(shù)有一個寬為的通道.給出下列函數(shù):①;②;③;④.其中在區(qū)間上通道寬度為1的函數(shù)由__________ (寫出所有正確的序號).
【答案】①②③.
【解析】
分析:對于①,求出函數(shù)的值域,判斷即可;對于②,從函數(shù)圖象入手,尋找符合條件的直線即可;對于③,利用導數(shù)研究函數(shù)的單調(diào)性,即可得其值域,判斷即可;對于④,求出函數(shù)的值域,并根據(jù)導數(shù)的幾何意義求出函數(shù)的切線方程,從而可判斷.
詳解:對于①,,當時,,故在上有一個寬度為1的通道,兩條直線可取,;
對于②,,當時,表示的是雙曲線在第一象限的部分,雙曲線的漸近線為,故函數(shù)滿足,滿足在上有一個寬度為1的通道;
對于③,,,當時,,時,,則,且在上的值域為,滿足,故該函數(shù)滿足在上有一個寬度為1的通道;
對于④,,,與之間的距離為,又因為,則為增函數(shù),設的切點為,則,解得,則與平行的切線為:,即,,因為與相切,故不存在兩條直線.
故答案為①②③.
科目:高中數(shù)學 來源: 題型:
【題目】如圖,水平的廣場上有一盞路燈掛在高的電線桿頂上,記電線桿的底部為點.把路燈看作一個點光源,身高的女孩站在離點的點處,回答下面的問題.
(1)若女孩以為半徑繞著電線桿走一個圓圈,人影掃過的是什么圖形,求這個圖形的面積;
(2)若女孩向點前行到達點,然后從點出發(fā)沿著以為對角線的正方形走一圈,畫出女孩走一圈時頭頂影子的軌跡,說明軌跡的形狀.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某品牌手機廠商推出新款的旗艦機型,并在某地區(qū)跟蹤調(diào)查得到這款手機上市時間(個月)和市場占有率()的幾組相關對應數(shù)據(jù):
1 | 2 | 3 | 4 | 5 | |
0.02 | 0.05 | 0.1 | 0.15 | 0.18 |
(1)根據(jù)上表中的數(shù)據(jù),用最小二乘法求出關于的線性回歸方程;
(2)根據(jù)上述回歸方程,分析該款旗艦機型市場占有率的變化趨勢,并預測自上市起經(jīng)過多少個月,該款旗艦機型市場占有率能超過(精確到月).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,某機械廠要將長,寬的長方形鐵皮進行裁剪.已知點為的中點,點在邊上,裁剪時先將四邊形沿直線翻折到處(點,分別落在直線下方點,處,交邊于點,再沿直線裁剪.
(1)當時,試判斷四邊形的形狀,并求其面積;
(2)若使裁剪得到的四邊形面積最大,請給出裁剪方案,并說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】乒乓球比賽規(guī)則規(guī)定:一局比賽,雙方比分在10平前,一方連續(xù)發(fā)球2次后,對方再連續(xù)發(fā)球2次,依次輪換,每次發(fā)球,勝方得1分,負方得0分,設在甲、乙的比賽中,每次發(fā)球,發(fā)球方得1分的概率為0.6,各次發(fā)球的勝負結果相互獨立.甲、乙的一局比賽中,甲先發(fā)球.
(1)求開始第4次發(fā)球時,甲、乙的比分為1比2的概率;
(2)表示開始第4次發(fā)球時乙的得分,求的期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在多面體中,底面是梯形,四邊形是正方形,,,面面,..
(1)求證:平面平面;
(2)設為線段上一點,,試問在線段上是否存在一點,使得平面,若存在,試指出點的位置;若不存在,說明理由?
(3)在(2)的條件下,求點到平面的距離.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】新鮮的荔枝很好吃,但摘下后容易變黑,影響賣相。某超市計劃每年六月從精準扶貧戶中訂購荔枝,每天進貨量相同且每公斤20元,當日18時前售價為每公斤24元,18時后以每公斤16元的價格銷售完畢。根據(jù)往年情況,每天的荔枝需求量與當天平均氣溫有關,如下表表示:
平均氣溫t(攝氏度) | ||||
需求量n(公斤) | 50 | 100 | 200 | 300 |
為了確定今年6月1日6月30日的日購數(shù)量,統(tǒng)計了前三年六月各天的平均氣溫,得到如下的頻數(shù)分布表:
平均氣溫 | ||||||
天數(shù) | 2 | 16 | 36 | 25 | 7 | 4 |
(1)假設該超市在以往三年內(nèi)的六月每天進貨100公斤,求荔枝為超市帶來的日平均利潤(結果取整數(shù)).
(2)若今年該超市進貨量為200公斤,以記錄的各需求量的頻率作為相應的概率,求當天超市不虧損的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設,函數(shù),函數(shù).
(1)當時,求函數(shù)的零點個數(shù);
(2)若函數(shù)與函數(shù)的圖象分別位于直線的兩側,求的取值集合;
(3)對于,,求的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com