19.過點M($\frac{\sqrt{2}}{2}$,-$\frac{\sqrt{2}}{2}$)作圓x2+y2=1的切線l,l與x軸的交點為拋物線E:y2=2px(p>0)的焦點,l與拋物線E交于A、B兩點,則AB中點到拋物線E的準(zhǔn)線的距離為( 。
A.$\frac{5\sqrt{2}}{2}$B.3$\sqrt{2}$C.$\frac{7}{2}$$\sqrt{2}$D.4$\sqrt{2}$

分析 利用已知條件求出切線方程,求出拋物線的焦點坐標(biāo),得到拋物線方程,聯(lián)立直線與拋物線方程,利用韋達(dá)定理求出中點的橫坐標(biāo),然后求解結(jié)果.

解答 解:過點M($\frac{\sqrt{2}}{2}$,-$\frac{\sqrt{2}}{2}$)作圓x2+y2=1的切線l,點在圓上,可得曲線的斜率為:1,
切線方程為:y+$\frac{\sqrt{2}}{2}$=x-$\frac{\sqrt{2}}{2}$,可得x-y-$\sqrt{2}$=0,直線與x軸的交點坐標(biāo)($\sqrt{2}$,0),
可得拋物線方程為:y2=4$\sqrt{2}$x,
$\left\{\begin{array}{l}{{y}^{2}=4\sqrt{2}x}\\{y=x-\sqrt{2}}\end{array}\right.$,可得x2-6$\sqrt{2}x$+2=0,l與拋物線E交于A(x1,y1)、B(x2,y2),
可得:x1+x2=6$\sqrt{2}$,
則AB中點到拋物線E的準(zhǔn)線的距離為:3$\sqrt{2}+\sqrt{2}$=4$\sqrt{2}$.
故選:D.

點評 本題考查拋物線的簡單性質(zhì)的應(yīng)用,直線與拋物線的位置關(guān)系,考查計算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.計算:
(1)已知$a{\;}^{\frac{1}{2}}+a{\;}^{-\frac{1}{2}}=3$,求a+a-1;
(2)$2{(lg\sqrt{2})^2}+lg\sqrt{2}•lg5+\sqrt{{{(lg\sqrt{2})}^2}-2lg\sqrt{2}+1}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.過定點P(2,-1)作動圓C:x2+y2-2ay+a2-2=0的一條切線,切點為T,則線段PT長的最小值是$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.如圖,在多面體ABCDE中,平面ABE⊥平面ABCD,△ABE是等邊三角形,四邊形ABCD是直角梯形,AB⊥AD,AB⊥BC,AB=AD=$\frac{1}{2}$BC=2,M是EC的中點.
(1)求證:DM∥平面ABE;
(2)求三棱錐M-BDE的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.如果圓(x-a)2+(y-a)2=8上存在一點P到直線y=-x的最短距離為$\sqrt{2}$,則實數(shù)a的值為(  )
A.-3B.3C.$3\sqrt{2}$D.-3或3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知橢圓M:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的焦距為2$\sqrt{3}$,離心率為$\frac{\sqrt{3}}{2}$.
(1)求橢圓M的方程;
(2)若圓N:x2+y2=r2的斜率為k的切線l與橢圓M相交于P、Q兩點,OP與OQ能否垂直?若能垂直,請求出相應(yīng)的r的值,若不能垂直,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知雙曲線E:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左、右焦點分別為F1、F2,|F1F2|=6,P是E右支上一點,PF1與y軸交于點A,△PAF2的內(nèi)切圓在邊AF2上的切點為Q,若|AQ|=$\sqrt{3}$,則E的離心率是( 。
A.2$\sqrt{3}$B.$\sqrt{5}$C.$\sqrt{3}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知某次數(shù)學(xué)考試的成績服從正態(tài)分布N(116,82),則成績在140分以上的考生所占的百分比為( 。
(附:正態(tài)總體在三個特殊區(qū)間內(nèi)取值的概率值①P(μ-σ<X≤μ+σ)=0.6826;②P(μ-2σ<X≤μ+2σ)=0.9544;③P(μ-3σ<X≤μ+3σ)=0.9974)
A.0.3%B.0.23%C.1.3%D.0.13%

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知函數(shù)f(x)=$\left\{\begin{array}{l}{lo{g}_{a}(2-x),x≤1}\\{|x-5|-1,3≤x≤7}\end{array}\right.$(a>0,且a≠1)的圖象上關(guān)于直線x=1對稱的點有且僅有一對,則實數(shù)a的取值范圍是( 。
A.[$\frac{1}{7}$,$\frac{1}{5}$]∪{3}B.[3,5]∪{$\frac{1}{7}$}C.[$\frac{1}{7}$,$\frac{1}{3}$)∪{5}D.[3,7)∪{$\frac{1}{5}$}

查看答案和解析>>

同步練習(xí)冊答案