【題目】一個(gè)調(diào)查學(xué)生記憶力的研究團(tuán)隊(duì)從某中學(xué)隨機(jī)挑選100名學(xué)生進(jìn)行記憶測(cè)試,通過(guò)講解100個(gè)陌生單詞后,相隔十分鐘進(jìn)行聽(tīng)寫(xiě)測(cè)試,間隔時(shí)間(分鐘)和答對(duì)人數(shù)的統(tǒng)計(jì)表格如下:

時(shí)間(分鐘)

10

20

30

40

50

60

70

80

90

100

答對(duì)人數(shù)

98

70

52

36

30

20

15

11

5

5

1.99

1.85

1.72

1.56

1.48

1.30

1.18

1.04

0.7

0.7

時(shí)間與答對(duì)人數(shù)的散點(diǎn)圖如圖:

附:,,,,,對(duì)于一組數(shù)據(jù),……,,其回歸直線的斜率和截距的最小二乘估計(jì)分別為:,.請(qǐng)根據(jù)表格數(shù)據(jù)回答下列問(wèn)題:

1)根據(jù)散點(diǎn)圖判斷,,哪個(gè)更適宣作為線性回歸類型?(給出判斷即可,不必說(shuō)明理由)

2)根據(jù)(1)的判斷結(jié)果,建立的回歸方程;(數(shù)據(jù)保留3位有效數(shù)字)

3)根據(jù)(2)請(qǐng)估算要想記住的內(nèi)容,至多間隔多少分鐘重新記憶一遍.(參考數(shù)據(jù):,

【答案】1;(2;(319.05分鐘.

【解析】

(1)根據(jù)圖象可得答案;

(2)先求得的線性回歸方程,再將對(duì)數(shù)式化為指數(shù)式可得的回歸方程;

(3)解不等式 可得答案.

1)由圖象可知,更適宜作為線性回歸類型;

2)設(shè),根據(jù)最小二乘法得

,

所以,

因此;

3)由題意知,即,解得

,即至多19.05分鐘,就需要重新復(fù)習(xí)一遍.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某口罩廠一年中各月份的收入、支出情況如圖所示(單位:萬(wàn)元,下列說(shuō)法中錯(cuò)誤的是(注:月結(jié)余=月收入一月支出)( )

A.上半年的平均月收入為45萬(wàn)元B.月收入的方差大于月支出的方差

C.月收入的中位數(shù)為70D.月結(jié)余的眾數(shù)為30

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公司培訓(xùn)員工某項(xiàng)技能,培訓(xùn)有如下兩種方式:

方式一:周一到周五每天培訓(xùn)1小時(shí),周日測(cè)試

方式二:周六一天培訓(xùn)4小時(shí),周日測(cè)試

公司有多個(gè)班組,每個(gè)班組60人,現(xiàn)任選兩組記為甲組、乙組先培訓(xùn);甲組選方式一,乙組選方式二,并記錄每周培訓(xùn)后測(cè)試達(dá)標(biāo)的人數(shù)如表:

第一周

第二周

第三周

第四周

甲組

20

25

10

5

乙組

8

16

20

16

用方式一與方式二進(jìn)行培訓(xùn),分別估計(jì)員工受訓(xùn)的平均時(shí)間精確到,并據(jù)此判斷哪種培訓(xùn)方式效率更高?

在甲乙兩組中,從第三周培訓(xùn)后達(dá)標(biāo)的員工中采用分層抽樣的方法抽取6人,再?gòu)倪@6人中隨機(jī)抽取2人,求這2人中至少有1人來(lái)自甲組的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,直線的坐標(biāo)方程為,曲線的參數(shù)方程為為參數(shù),.

1)求直線的直角坐標(biāo)方程及曲線的普通方程;

2)直線和曲線相交于點(diǎn),,設(shè)相交弦的長(zhǎng)度為,求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】最近,紀(jì)錄片《美國(guó)工廠》引起中美觀眾熱議,大家都認(rèn)識(shí)到,大力發(fā)展制造業(yè),是國(guó)家強(qiáng)盛的基礎(chǔ),而產(chǎn)業(yè)工人的年齡老化成為阻礙美國(guó)制造業(yè)發(fā)展的障礙,中國(guó)應(yīng)未雨綢繆.某工廠有35周歲以上(含35周歲)工人300名,35周歲以下工人200名,為研究工人的日平均生產(chǎn)量是否與年齡有關(guān).現(xiàn)采用分層抽樣的方法,從中抽取了100名工人,先統(tǒng)計(jì)了他們某月的日平均生產(chǎn)件數(shù),然后按工人年齡在“35周歲以上(含35周歲)”和“35周歲以下”分為兩組,在將兩組工人的日平均生產(chǎn)件數(shù)分成5組:分別加以統(tǒng)計(jì),得到如圖所示的頻率分布直方圖.

1)從樣本中日平均生產(chǎn)件數(shù)不足60件的工人中隨機(jī)抽取2人,求至少抽到一名“35周歲以下組”工人的概率.

2)規(guī)定日平均生產(chǎn)件數(shù)不少于80件者為“生產(chǎn)能手”,請(qǐng)你根據(jù)已知條件完成的列聯(lián)表,并判斷是否有95%的把握認(rèn)為“生產(chǎn)能手與工人所在的年齡組有關(guān)”?

生產(chǎn)能手

非生產(chǎn)能手

合計(jì)

35歲以下

35歲以上

合計(jì)

附表:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)且,,曲線的參數(shù)方程為為參數(shù)),以為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為

(1)求的普通方程及的直角坐標(biāo)方程;

(2)若曲線與曲線分別交于點(diǎn),,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)的圖象關(guān)于直線對(duì)稱,則(

A.函數(shù)為奇函數(shù)

B.函數(shù)上單調(diào)遞增

C.,則的最小值為

D.函數(shù)的圖象向右平移個(gè)單位長(zhǎng)度得到函數(shù)的圖象

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】《九章算術(shù)》是我國(guó)古代內(nèi)容極為豐富的數(shù)學(xué)名著,卷一《方田》中有如下兩個(gè)問(wèn)題:

[三三]今有宛田,下周三十步,徑十六步.問(wèn)為田幾何?

[三四]又有宛田,下周九十九步,徑五十一步.問(wèn)為田幾何?

翻譯為:[三三]現(xiàn)有扇形田,弧長(zhǎng)30步,直徑長(zhǎng)16.問(wèn)這塊田面積是多少?

[三四]又有一扇形田,弧長(zhǎng)99步,直徑長(zhǎng)51.問(wèn)這塊田面積是多少?

則下列說(shuō)法正確的是(

A.問(wèn)題[三三]中扇形的面積為240平方步B.問(wèn)題[三四]中扇形的面積為平方步

C.問(wèn)題[三三]中扇形的面積為60平方步D.問(wèn)題[三四]中扇形的面積為平方步

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(Ⅰ)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;

(Ⅱ)討論函數(shù)的單調(diào)性;

(Ⅲ)對(duì)于任意,,都有,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案