在數(shù)列中,,且.
(Ⅰ) 求,猜想的表達(dá)式,并加以證明;
(Ⅱ)設(shè),求證:對(duì)任意的自然數(shù)都有.
(Ⅰ) (Ⅱ)
所以
所以只需要證明
(顯然成立)
所以對(duì)任意的自然數(shù),都有
解析試題分析:(1)容易求得:, (1分)
故可以猜想, 下面利用數(shù)學(xué)歸納法加以證明:
顯然當(dāng)時(shí),結(jié)論成立, 2分)
假設(shè)當(dāng);時(shí)(也可以),結(jié)論也成立,即
,(3分)
那么當(dāng)時(shí),由題設(shè)與歸納假設(shè)可知:
(5分)
即當(dāng)時(shí),結(jié)論也成立,綜上,對(duì),成立。
(2)
所以
所以只需要證明
(顯然成立)
所以對(duì)任意的自然數(shù),都有-------(12分)
考點(diǎn):數(shù)列通項(xiàng)公式的證明及數(shù)列求和
點(diǎn)評(píng):本題應(yīng)用數(shù)學(xué)歸納法證明通項(xiàng)公式,數(shù)學(xué)歸納法用來證明與正整數(shù)有關(guān)的命題,第一步先證明n取最小值時(shí)成立,第二步假設(shè)時(shí)命題成立,借此來證明時(shí)命題成立,綜上一二兩步可得命題成立
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列中, ,().
(1)計(jì)算,,;
(2)猜想數(shù)列的通項(xiàng)公式并用數(shù)學(xué)歸納法證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列{an}中,a2=1,前n項(xiàng)和為Sn,且.
(1)求a1,a3;
(2)求證:數(shù)列{an}為等差數(shù)列,并寫出其通項(xiàng)公式;
(3)設(shè),試問是否存在正整數(shù)p,q(其中1<p<q),使b1,bp,bq成等比數(shù)列?若存在,求出所有滿足條件的數(shù)組(p,q);若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列{}的前項(xiàng)和為
(1)求證:數(shù)列是等比數(shù)列;
(2)設(shè)數(shù)列{}的前項(xiàng)和為,求 。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
數(shù)列{}中,a1=3,,
(1)求a1、a2、a3、a4;
(2)用合情推理猜測(cè)關(guān)于n的表達(dá)式(不用證明);
(3)用合情推理猜測(cè){}是什么類型的數(shù)列并證明;
(4)求{}的前n項(xiàng)的和。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分14分)
已知點(diǎn)(1,)是函數(shù)且)的圖象上一點(diǎn),等比數(shù)列的前項(xiàng)和為,數(shù)列的首項(xiàng)為,且前項(xiàng)和滿足().
(1)求數(shù)列和的通項(xiàng)公式;
(2)若數(shù)列{前項(xiàng)和為,問>的最小正整數(shù)是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(滿分13分)已知各項(xiàng)均為正數(shù)的數(shù)列是數(shù)列的前n項(xiàng)和,對(duì)任意,有2Sn=2.
(Ⅰ)求常數(shù)p的值;
(Ⅱ)求數(shù)列的通項(xiàng)公式;
(Ⅲ)記,()若數(shù)列從第二項(xiàng)起每一項(xiàng)都比它的前一項(xiàng)大,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
定義數(shù)列,(例如時(shí),)滿足,且當(dāng)()時(shí),.令.
(1)寫出數(shù)列的所有可能的情況;(5分)
(2)設(shè),求(用的代數(shù)式來表示);(5分)
(3)求的最大值.(6分)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com