分析 (Ⅰ)由題意和正余弦定理及和差角的三角函數(shù)公式,易得cosC,由三角形內(nèi)角的范圍可得.
(Ⅱ)利用余弦定理、基本不等式的性質(zhì)、三角形面積計算公式即可得出.
解答 (本題滿分為12分)
解:(Ⅰ)∵在△ABC中acosB+bcosA=2ccosC,
∴由正弦定理可得sinAcosB+sinBcosA=2sinCcosC,
∴sin(A+B)=2sinCcosC,
∴sinC=2sinCcosC,
∴解得:cosC=$\frac{1}{2}$,
∴由三角形內(nèi)角的范圍可得角C=$\frac{π}{3}$.
(Ⅱ)由余弦定理可得:12=c2=a2+b2-2abcosC≥2ab-ab=ab,
可得ab≤12,當且僅當a=2$\sqrt{3}$時取等號.
∴△ABC面積的最大值=$\frac{1}{2}×12×sin\frac{π}{3}$=3$\sqrt{3}$.
點評 本題考查了正弦定理余弦定理、三角形面積計算公式、和差公式、基本不等式的性質(zhì),考查了推理能力與計算能力,屬于基礎題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | -2 | B. | 2 | C. | -$\frac{1}{2}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{3π}{4}$ | B. | $\frac{2π}{3}$ | C. | $\frac{π}{4}$ | D. | $\frac{π}{6}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | a4=0 | B. | S4=S3 | C. | S7=0 | D. | an是遞減數(shù)列 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (0,+∞) | B. | (-1,2) | C. | (0,2) | D. | (2,+∞) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com