設(shè)拋物線y2=4x上一點(diǎn)P到直線x+2=0的距離是5,則點(diǎn)P到拋物線焦點(diǎn)F的距離為   
【答案】分析:先根據(jù)拋物線的方程求得拋物線的準(zhǔn)線方程,根據(jù)點(diǎn)P到直線x+2=0的距離求得點(diǎn)到準(zhǔn)線的距離,進(jìn)而利用拋物線的定義可知點(diǎn)到準(zhǔn)線的距離與點(diǎn)到焦點(diǎn)的距離相等,從而求得答案.
解答:解:拋物線y2=4x的準(zhǔn)線為x=-1,
∵點(diǎn)P到直線x+2=0的距離為5,
∴點(diǎn)p到準(zhǔn)線x=-1的距離是5-1=4,
根據(jù)拋物線的定義可知,點(diǎn)P到該拋物線焦點(diǎn)的距離是4,
故答案為:4.
點(diǎn)評(píng):本題主要考查了拋物線的定義.充分利用了拋物線上的點(diǎn)到準(zhǔn)線的距離與點(diǎn)到焦點(diǎn)的距離相等這一特性.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

12、設(shè)拋物線y2=4x上一點(diǎn)P到直線x=-3的距離為5,則點(diǎn)P到該拋物線焦點(diǎn)的距離是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)拋物線y2=4x上一點(diǎn)P到該拋物線準(zhǔn)線與直線l:4x-3y+6=0的距離之和為d,若d取到最小值,則點(diǎn)P的坐標(biāo)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

12、設(shè)拋物線y2=4x上一點(diǎn)P到直線x+2=0的距離是5,則點(diǎn)P到拋物線焦點(diǎn)F的距離為
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)拋物線y2=4x上一點(diǎn)P到y(tǒng)軸的距離是2,則點(diǎn)P到該拋物線焦點(diǎn)的距離是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)拋物線y2=4x上一點(diǎn)P到此拋物線準(zhǔn)線的距離為d1,到直線3x+4y+12=0的距離為d2,則d1+d2的最小值為( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案