【題目】設(shè)函數(shù).

(1) 討論的單調(diào)性;

(2) 設(shè),當(dāng)時(shí), ,求的取值范圍.

【答案】(1)見解析(2)

【解析】試題分析:(1)對(duì)函數(shù)求導(dǎo),先求得的單調(diào)性,再求出時(shí)函數(shù)的極值點(diǎn),再對(duì)進(jìn)行討論求得函數(shù)的單調(diào)性;(2)由,令,再令,求出的單調(diào)性,即可得,再對(duì)進(jìn)行討論,結(jié)合函數(shù)的單調(diào)性,即可求出的取值范圍.

試題解析:(1由題意得, .

當(dāng)時(shí),當(dāng), ;當(dāng)時(shí), ;

f(x)單調(diào)遞減,在單調(diào)遞增

當(dāng)時(shí),令x=1 ,x=

當(dāng)時(shí), ;當(dāng)時(shí), ;

當(dāng)時(shí),

所以f(x), 單調(diào)遞增,在單調(diào)遞減

②當(dāng)時(shí), 所以f(x)R單調(diào)遞增

③當(dāng)時(shí), ,

當(dāng)時(shí),

當(dāng)時(shí),

f(x), 單調(diào)遞增,在單調(diào)遞減

2)令,有 .

,有,當(dāng)時(shí), , 單調(diào)遞增.

,即 .

當(dāng)時(shí), , 單調(diào)遞增,

,不等式恒成立

當(dāng)時(shí), 有一個(gè)解,設(shè)為根.

∴有, , 單調(diào)遞減;當(dāng)時(shí), ; 單調(diào)遞增,有

∴當(dāng)時(shí), 不恒成立;

綜上所述, 的取值范圍是

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】13分)設(shè){an}是公比為正數(shù)的等比數(shù)列a1=2,a3=a2+4

)求{an}的通項(xiàng)公式;

)設(shè){bn}是首項(xiàng)為1,公差為2的等差數(shù)列,求數(shù)列{an+bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我校舉行“兩城同創(chuàng)”的知識(shí)競(jìng)賽答題,高一年級(jí)共有1200名學(xué)生參加了這次競(jìng)賽.為了解競(jìng)賽成績情況,從中抽取了100名學(xué)生的成績進(jìn)行統(tǒng)計(jì).其中成績分組區(qū)間為,,,,其頻率分布直方圖如圖所示,請(qǐng)你解答下列問題:

(1)求的值;

(2)若成績不低于90分的學(xué)生就能獲獎(jiǎng),問所有參賽學(xué)生中獲獎(jiǎng)的學(xué)生約為多少人;

(3)根據(jù)頻率分布直方圖,估計(jì)這次平均分(用組中值代替各組數(shù)據(jù)的平均值).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓同時(shí)滿足下列三個(gè)條件:①與軸相切;②在直線上截得弦長為;③圓心在直線上.求圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】己知橢圓C:的左右焦點(diǎn)分別為,,直線l:與橢圓C交于A,B兩點(diǎn)為坐標(biāo)原點(diǎn).

若直線l過點(diǎn),且,求直線l的方程;

若以AB為直徑的圓過點(diǎn)O,點(diǎn)P是線段AB上的點(diǎn),滿足,求點(diǎn)P的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司為確定下一年度投入某種產(chǎn)品的宣傳費(fèi),需了解年宣傳費(fèi)(單位:千元)對(duì)年銷售量(單位:)和年利潤(單位:千元)的影響,對(duì)近13年的宣傳費(fèi)和年銷售量 數(shù)據(jù)作了初步處理,得到下面的散點(diǎn)圖及一些統(tǒng)計(jì)量的值

由散點(diǎn)圖知,建立關(guān)于的回歸方程是合理的,經(jīng)計(jì)算得如下數(shù)據(jù)

10.15

109.94

0.16

-2.10

0.21

21.22

(1)根據(jù)以上信息,建立關(guān)于的回歸方程;

(2)已知這種產(chǎn)品的年利潤的關(guān)系為根據(jù)(1)的結(jié)果,求當(dāng)年宣傳費(fèi)時(shí)年利潤的預(yù)報(bào)值是多少?

對(duì)于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計(jì)分別為,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)f1(x)=Asin(ωxφ)(A>0,ω>0,|φ|<)的一段圖象過點(diǎn)(0,1),如圖所示.

(1)求函數(shù)f1(x)的表達(dá)式;

(2)將函數(shù)yf1(x)的圖象向右平移個(gè)單位,得函數(shù)yf2(x)的圖象,求yf2(x)的最大值,并求出此時(shí)自變量x的集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正四棱錐中,,,分別是,的中點(diǎn),動(dòng)點(diǎn)在線段上運(yùn)動(dòng)時(shí),下列四個(gè)結(jié)論中恒成立的為( .

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】潮汐是發(fā)生在沿海地區(qū)的一種自然現(xiàn)象,其形成是海水受日月的引力.潮是指海水在一定的時(shí)候發(fā)生漲落的現(xiàn)象.一般來說,早潮叫潮,晚潮叫汐.某觀測(cè)站通過長時(shí)間的觀測(cè),其發(fā)現(xiàn)潮汐的漲落規(guī)律和函數(shù)圖象基本一致且周期為,其中為時(shí)間,為水深.當(dāng)時(shí),海水上漲至最高5.

1)作出函數(shù)內(nèi)的圖象,并求出潮汐漲落的頻率和初相;

2)求海水水深持續(xù)加大的時(shí)間區(qū)間.

查看答案和解析>>

同步練習(xí)冊(cè)答案