分析 (1)求出函數(shù)的導(dǎo)數(shù),求出極值點(diǎn),利用導(dǎo)函數(shù)的符號(hào),判斷函數(shù)的單調(diào)性即可.
(2)化簡(jiǎn)f(x)=(1-x)(1+x)ex.f(x)≤ax+1,下面對(duì)a的范圍進(jìn)行討論:
①當(dāng)a≥1時(shí),②當(dāng)0<a<1時(shí),設(shè)函數(shù)g(x)=ex-x-1,則g′(x)=ex-1>0(x>0),推出結(jié)論;③當(dāng)a≤0時(shí),推出結(jié)果,然后得到a的取值范圍.
解答 解:(1)因?yàn)閒(x)=(1-x2)ex,x∈R,
所以f′(x)=(1-2x-x2)ex,
令f′(x)=0可知x=-1±$\sqrt{2}$,
當(dāng)x<-1-$\sqrt{2}$或x>-1+$\sqrt{2}$時(shí)f′(x)<0,當(dāng)-1-$\sqrt{2}$<x<-1+$\sqrt{2}$時(shí)f′(x)>0,
所以f(x)在(-∞,-1-$\sqrt{2}$),(-1+$\sqrt{2}$,+∞)上單調(diào)遞減,在(-1-$\sqrt{2}$,-1+$\sqrt{2}$)上單調(diào)遞增;
(2)由題可知f(x)=(1-x)(1+x)ex.下面對(duì)a的范圍進(jìn)行討論:
①當(dāng)a≥1時(shí),設(shè)函數(shù)h(x)=(1-x)ex,則h′(x)=-xex<0(x>0),
因此h(x)在[0,+∞)上單調(diào)遞減,
又因?yàn)閔(0)=1,所以h(x)≤1,
所以f(x)=(1-x)h(x)≤x+1≤ax+1;
②當(dāng)0<a<1時(shí),設(shè)函數(shù)g(x)=ex-x-1,則g′(x)=ex-1>0(x>0),
所以g(x)在[0,+∞)上單調(diào)遞增,
又g(0)=1-0-1=0,
所以ex≥x+1.
因?yàn)楫?dāng)0<x<1時(shí)f(x)>(1-x)(1+x)2,
所以(1-x)(1+x)2-ax-1=x(1-a-x-x2),
取x0=$\frac{\sqrt{5-4a}-1}{2}$∈(0,1),則(1-x0)(1+x0)2-ax0-1=0,
所以f(x0)>ax0+1,矛盾;
③當(dāng)a≤0時(shí),取x0=$\frac{\sqrt{5}-1}{2}$∈(0,1),則f(x0)>(1-x0)(1+x0)2=1≥ax0+1,矛盾;
綜上所述,a的取值范圍是[1,+∞).
點(diǎn)評(píng) 本題考查函數(shù)的導(dǎo)數(shù)的應(yīng)用,函數(shù)的單調(diào)性以及函數(shù)的最值的求法,考查轉(zhuǎn)化思想以及計(jì)算能力.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1或-1 | B. | $\sqrt{7}$或-$\sqrt{7}$ | C. | -$\sqrt{3}$ | D. | $\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | a=2b | B. | b=2a | C. | A=2B | D. | B=2A |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | a<b<c | B. | c<b<a | C. | b<a<c | D. | b<c<a |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com