分析 (1)由x的取值范圍,求出2x+$\frac{π}{6}$的取值范圍,從而求出2sin(2x+$\frac{π}{6}$)的取值范圍;討論a>0、a<0時,函數(shù)f(x)的最值問題,從而求出a和b的值.
(2)根據(jù)(1)的結(jié)論,分兩種情況討論,根據(jù)正弦函數(shù)的性質(zhì)即可求出.
解答 解:(1)∵0≤x≤$\frac{π}{2}$,
∴$\frac{π}{6}$≤2x+$\frac{π}{6}$≤$\frac{7π}{6}$,
∴$-\frac{1}{2}$≤sin(2x+$\frac{π}{6}$)≤1,
∴-1≤2sin(2x+$\frac{π}{6}$)≤2,
當(dāng)a>0時,$\left\{\begin{array}{l}{2a+2a+b=1}\\{-a+2a+b=-5}\end{array}\right.$解得a=2,b=-7,
當(dāng)a<0時,$\left\{\begin{array}{l}{-2a+2a+b=1}\\{a+2a+b=-5}\end{array}\right.$,解得a=-2,b=1,
(2)當(dāng)a=2,b=-7時,g(x)=-8sin(-7x-$\frac{π}{3}$)=8sin(7x+$\frac{π}{3}$),
其最小值為-8,7x+$\frac{π}{3}$=-$\frac{π}{2}$+2kπ,k∈Z,即x=-$\frac{5π}{42}$+$\frac{2kπ}{7}$,k∈Z,對應(yīng)x的集合為{x|x=-$\frac{5π}{42}$+$\frac{2kπ}{7}$,k∈Z},
當(dāng)a=-2,b=1時,g(x)=-8sin(x-$\frac{π}{3}$)=-8sin(x-$\frac{π}{3}$),
其最小值為-8,x-$\frac{π}{3}$=$\frac{π}{2}$+2kπ,k∈Z,即x=$\frac{5}{6}$π+2kπ,k∈Z,對應(yīng)x的集合為{x|x=$\frac{5}{6}$π+2kπ,k∈Z}.
點評 本題考查了三角函數(shù)的圖象與應(yīng)用問題,解題時應(yīng)根據(jù)三角函數(shù)的最值與值域的關(guān)系,利用分類討論的方法,求出a和b的值.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 邊 | B. | 中線 | C. | 高 | D. | 角平分線 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{5}-1$ | B. | 2 | C. | $\sqrt{5}$ | D. | $\sqrt{5}+1$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{3}{4}$或0 | B. | $\frac{4}{3}$或0 | C. | -$\frac{3}{4}$或0 | D. | -$\frac{4}{3}$或0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {2,-1,-2} | B. | {2,-1,-2,-1} | C. | {4,1,0,-1} | D. | [2,-1,-2] |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com