3.將函數(shù)$f(x)=2cos(\frac{x}{2}-\frac{π}{6})$的圖象向左平移$\frac{π}{3}$單位后得到函數(shù)g(x)的圖象,則函數(shù)g(x)在[-π,4π]上的圖象與直線y=1的交點的橫坐標(biāo)之和為( 。
A.B.C.$\frac{10π}{3}$D.$\frac{11π}{3}$

分析 根據(jù)函數(shù)的圖象變換求得g(x)圖象,則g(x)=1,根據(jù)x取值范圍,求得x的所有取值,即可求得答案.

解答 解:函數(shù)$f(x)=2cos(\frac{x}{2}-\frac{π}{6})$的圖象向左平移$\frac{π}{3}$,則g(x)=2cos($\frac{1}{2}$(x+$\frac{π}{3}$)-$\frac{π}{6}$)=2cos$\frac{x}{2}$,
由g(x)=1,則cos$\frac{x}{2}$=$\frac{1}{2}$,
由x∈[-π,4π],則$\frac{x}{2}$∈[-$\frac{π}{2}$,2π],
∴$\frac{x}{2}$=-$\frac{π}{3}$,$\frac{π}{3}$,$\frac{5π}{3}$,
∴x=-$\frac{2π}{3}$,$\frac{2π}{3}$,$\frac{10π}{3}$,
∴函數(shù)g(x)在[-π,4π]上的圖象與直線y=1的交點的橫坐標(biāo)之和$\frac{10π}{3}$,
故選C.

點評 本題考查函數(shù)的圖象變換,考查余弦函數(shù)的性質(zhì),特殊角的三角形函數(shù)值,考查計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.設(shè)函數(shù)f(x)=2x3+3ax2+3bx+c在x=1及x=2時取得極值.
(1)求a,b的值;
(2)若f(x)在[-1,2]上的最大值是9,求f(x)在[-1,2]上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.下列敘述不正確的是( 。
A.類比推理是由特殊到特殊的推理
B.歸納推理是由特殊到一般的推理
C.演繹推理是由一般到特殊的推理
D.合情推理和演繹推理所得的結(jié)論都是正確的

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.在△ABC中,角A,B,C的對邊分別為a,b,c,E,F(xiàn)分別是AC,AB的中點,
(1)若∠C=60°,b=1,c=3,求△ABC的面積;   
(2)若3AB=2AC,$\frac{BE}{CF}$<t恒成立,求t的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知f(x)=$\left\{\begin{array}{l}\sqrt{1-{x^2}},x∈[-1,1]\\{x^2}-1,x∈(1,2]\end{array}$,則$\int_{-1}^2{f(x)dx=}$$\frac{π}{2}$+$\frac{4}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.下列命題中正確的是( 。
A.若α>β,則sinα>sinβ
B.命題:“?x>1,x2>1”的否定是“?x≤1,x2≤1”
C.已知函數(shù)f(x)=x3+ax2+bx+c,若f(x)在區(qū)間(-1,0)上單調(diào)遞減,則a2+b2的取值范圍為$[{\frac{9}{5},+∞})$
D.“若xy=0,則x=0或y=0”的逆否命題為“若x≠0或y≠0,則xy≠0”

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.如圖,直三棱柱ABC-A1B1C1中,AC=AA1=2AB,且BC1⊥A1C
(1)求證:A1C⊥平面ABC1
(2)若D是A1C1的中點,在線段BB1上是否存在點E,使DE∥平面ABC1?若存在,指出點E的位置;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知x,y滿足$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{4}$=1,則x,y的取值范圍是-3≤x≤3,-2≤y≤2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2}+x+a,x<0}\\{-\frac{1}{x},x>0}\end{array}\right.$的圖象上存在不同的兩點A,B,使得曲線y=f(x)在這兩點處的切線重合,則實數(shù)a的取值范圍是( 。
A.(-∞,$\frac{1}{4}$)B.(2,+∞)C.(-2,$\frac{1}{4}$)D.(-∞,2)∪($\frac{1}{4}$,+∞)

查看答案和解析>>

同步練習(xí)冊答案