15.設(shè)函數(shù)y=sin(?x+$\frac{π}{3}$)(0<x<π),當(dāng)且僅當(dāng)x=$\frac{π}{6}$時(shí),y取得最大值,則正數(shù)?的值為1.

分析 由條件利用正弦函數(shù)的最值,求得正數(shù)ω的值.

解答 解:因?yàn)楹瘮?shù)y=sin(ωx+$\frac{π}{3}$)在x=$\frac{π}{6}$處取得最大值,
所以$\frac{π}{6}$ω+$\frac{π}{3}$=2kπ+$\frac{π}{2}$,k∈Z,
所以ω=12k+1,k∈Z;
又0<x<π時(shí),當(dāng)且僅當(dāng)x=$\frac{π}{6}$時(shí)y取得最大值;
所以正數(shù)ω的值為1.
故答案為:1.

點(diǎn)評(píng) 本題主要考查正弦函數(shù)的最值,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.已知實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}{y≤2x}\\{2x-5y-8≤0}\\{y≤4-x}\end{array}\right.$,則z=x+2y的最小值為-5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知函數(shù)f(x)=2asin?xcos?x+2$\sqrt{3}$cos2?x-$\sqrt{3}$(a>0,?>0)的最大值為2,且最小正周期為π.
(1)求函數(shù)f(x)的解析式及期對(duì)稱軸方程;
(2)求函數(shù)f(x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.求橢圓C:$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{4}$=1在矩陣A=$[\begin{array}{l}{\frac{1}{3}}&{0}\\{0}&{\frac{1}{2}}\end{array}]$對(duì)應(yīng)的變換作用下所得的曲線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知集合A={x|x2-2x-8≤0},B={x|$\frac{x-6}{x+1}$<0},U=R.
(1)求A∪B;     
(2)求(∁UA)∩B;
(3)如果C={x|x-a>0},且A∩C≠∅,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.命題p:?x0∈R,x02+2x0+1≤0是真命題(選填“真”或“假”).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.設(shè)函數(shù)f(x)=kx2-kx,g(x)=$\left\{\begin{array}{l}lnx,x≥1\\-{x^3}+({a+1}){x^2}-ax,0<x<1\end{array}$,若使得不等式f(x)≥g(x)對(duì)一切正實(shí)數(shù)x恒成立的實(shí)數(shù)k存在且唯一,則實(shí)數(shù)a的值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.正四棱錐S-ABCD中,O為頂點(diǎn)在底面上的射影,P為側(cè)棱SD的中點(diǎn),且SO=OD,則直線BC與平面PAC所成的角是( 。
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.某消費(fèi)品專賣(mài)店的經(jīng)營(yíng)資料顯示如下:
①這種消費(fèi)品的進(jìn)價(jià)為每件14元;
②該店月銷售量Q(百件)與銷售價(jià)格P(元)滿足的函數(shù)關(guān)系式為Q=$\left\{\begin{array}{l}{k_1}P+{b_1},14≤P≤20\\{k_2}P+{b_2},20<P≤26\end{array}$,點(diǎn)(14,22),(20,10),(26,1)在函數(shù)的圖象上;
③每月需各種開(kāi)支4400元.
(1)求月銷量Q(百件)與銷售價(jià)格P(元)的函數(shù)關(guān)系;
(2)當(dāng)商品的價(jià)格為每件多少元時(shí),月利潤(rùn)最大?并求出最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案