7.若函數(shù)f(x)=sin(ωx+φ)(ω>0且|φ|<$\frac{π}{2}$)在區(qū)間[$\frac{π}{6}$,$\frac{2π}{3}$]上是單調(diào)減函數(shù),且函數(shù)值從1減小到-1,則f($\frac{π}{4}$)=( 。
A.1B.$\frac{1}{2}$C.$\frac{{\sqrt{3}}}{2}$D.0

分析 根據(jù)函數(shù)的單調(diào)性和最值求出ω 和φ的值即可得到結(jié)論.

解答 解:∵f(x)=sin(ωx+φ)(ω>0且|φ|<$\frac{π}{2}$)在區(qū)間[$\frac{π}{6}$,$\frac{2π}{3}$]上是單調(diào)減函數(shù),且函數(shù)值從1減小到-1,
∴$\frac{T}{2}=\frac{2π}{3}-\frac{π}{6}=\frac{π}{2}$,即函數(shù)的周期T=π,
∵T=$\frac{2π}{ω}=π$,∴ω=2,
則f(x)=sin(2x+φ),
∵f($\frac{π}{6}$)=sin(2×$\frac{π}{6}$+φ)=1,
∴sin($\frac{π}{3}$+φ)=1,
即$\frac{π}{3}$+φ=$\frac{π}{2}$+2kπ,k∈Z,
即φ=$\frac{π}{6}$+2kπ,k∈Z,
∵|φ|<$\frac{π}{2}$,
∴當(dāng)k=0時(shí),φ=$\frac{π}{6}$,
即f(x)=sin(2x+$\frac{π}{6}$),
則f($\frac{π}{4}$)=sin(2×$\frac{π}{4}$+$\frac{π}{6}$)=sin($\frac{π}{2}$+$\frac{π}{6}$)=cos$\frac{π}{6}$=$\frac{{\sqrt{3}}}{2}$,
故選:C.

點(diǎn)評(píng) 本題主要考查三角函數(shù)的圖象的應(yīng)用,根據(jù)條件求出ω 和φ的值是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.若正項(xiàng)數(shù)列{an}的前n項(xiàng)和為Sn,首項(xiàng)a1=1,點(diǎn)P($\sqrt{{S}_{n}}$,Sn+1)(n∈N*)在曲線y=(x+1)2上.
(1)求數(shù)列{an}的通項(xiàng)公式an
(2)設(shè)bn=$\frac{1}{{a}_{n}•{a}_{n+1}}$,Tn表示數(shù)列{bn}的前n項(xiàng)和,求證:Tn<$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.求函數(shù)y=sin22x+$\sqrt{3}$sinxcosx-1的最大值,最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知數(shù)列{an},$\overrightarrow{x}$=(an+1,-2),$\overrightarrow{y}$=(1,an),且$\overrightarrow{x}$⊥$\overrightarrow{y}$,a3+2是a2與a4的等差中項(xiàng).
(1)求數(shù)列{an}的通項(xiàng)公式an;
(2)若滿足bn=13+2log${\;}_{\frac{1}{2}}$an,Sn=b1+b2+…+bn,求Sn的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知函數(shù)f(x)=cos(ωx-$\frac{π}{6}$)(ω>0)的一條對(duì)稱軸與最近的一個(gè)零點(diǎn)的距離為$\frac{π}{4}$,要y=f(x)的圖象,只需把y=cosωx的圖象                        (  )
A.向右平移$\frac{π}{12}$個(gè)單位B.向左平移$\frac{π}{12}$個(gè)單位
C.向右平移$\frac{π}{6}$個(gè)單位D.向左平移$\frac{π}{6}$個(gè)單位

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知x、y滿足約束條件$\left\{\begin{array}{l}{x-y+5≥0}\\{x+y≥0}\\{x≤3}\end{array}\right.$,則z=2x+4y的最小值是-6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知曲線C的參數(shù)方程為$\left\{\begin{array}{l}x=2+\sqrt{5}cosα\\ y=1+\sqrt{5}sinα\end{array}\right.$(α為參數(shù)),以直角坐標(biāo)系原點(diǎn)為極點(diǎn),Ox軸正半軸為極軸建立極坐標(biāo)系.
(1)求曲線C的極坐標(biāo)方程
(2)若直線l的極坐標(biāo)方程為ρ(sinθ+cosθ)=1,求直線l被曲線C截得的弦長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.不等式組$\left\{\begin{array}{l}x-y+1≥0\\ x+y≥1\\ x≤1\end{array}\right.$表示的平面區(qū)域的面積為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.在ABC中,∠BAC=120°,AB=2,AC=1,D是邊BC上一點(diǎn),DC=2BD,則$\overrightarrow{AD}$•$\overrightarrow{BC}$=$-\frac{8}{3}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案