【題目】已知函數(shù)的極大值為,其中為自然對(duì)數(shù)的底數(shù).
(1)求實(shí)數(shù)的值;
(2)若函數(shù),對(duì)任意,恒成立.
(i)求實(shí)數(shù)的取值范圍;
(ii)證明:.
【答案】(1)(2)(i)(ii)證明見(jiàn)解析
【解析】
(1)求函數(shù)定義域,然后對(duì)函數(shù)求導(dǎo),根據(jù)函數(shù)單調(diào)性,得出時(shí),有極大值,即可算出實(shí)數(shù)的值.
(2)(i)由(1)知,,代入中,根據(jù),整理至即對(duì)恒成立,設(shè)新函數(shù),將原問(wèn)題轉(zhuǎn)化為:對(duì)恒成立,分的取值范圍分類(lèi)討論即可得出實(shí)數(shù)的取值范圍.(ii)要證,
轉(zhuǎn)化為證證,整理至,設(shè)兩個(gè)新函數(shù),,分別對(duì)兩個(gè)新函數(shù)求導(dǎo),判斷單調(diào)性,即可證得成立.
解:(1)的定義域?yàn)?/span>,
,
令,解得:,
令,解得:,
所以當(dāng),為增函數(shù),當(dāng),為減函數(shù),
所以時(shí),有極大值,
所以;
(2)(i)由(1)知,,
則,即對(duì)恒成立,
所以對(duì)恒成立,
即對(duì)恒成立,
設(shè),則對(duì)恒成立,
,
設(shè),,
原問(wèn)題轉(zhuǎn)化為:對(duì)恒成立,
①若,當(dāng)時(shí),
則,
不合題意;
②若,則對(duì)恒成立,
符合題意
③若,則,
令,,令,,
所以當(dāng)時(shí),為減函數(shù),
當(dāng)時(shí),為增函數(shù),
所以,
即,即;
綜上.
(ii)要證,
只需證,
即,即,
只需證,
設(shè),,
因?yàn)?/span>
所以在上單調(diào)遞減,在上單調(diào)遞增,
所以:
因?yàn)?/span>恒成立,
所以在上單調(diào)遞增,
所以,則,則,
由(2)可知,,所以;
所以,
即,得證.
所以 成立.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)矩陣M= (其中a>0,b>0).
(1)若a=2,b=3,求矩陣M的逆矩陣M-1;
(2)若曲線(xiàn)C:x2+y2=1在矩陣M所對(duì)應(yīng)的線(xiàn)性變換作用下得到曲線(xiàn)C′:+y2=1,求a,b的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在“互聯(lián)網(wǎng)+”時(shí)代的今天,移動(dòng)互聯(lián)快速發(fā)展,智能手機(jī)(Smartphone)技術(shù)不斷成熟,尤其在5G領(lǐng)域,華為更以件專(zhuān)利數(shù)排名世界第一,打破了以往由美、英、日壟斷的前三位置,再次榮耀世界,而華為的價(jià)格卻不斷下降,遠(yuǎn)低于蘋(píng)果;智能手機(jī)成為了生活中必不可少的工具,學(xué)生是對(duì)新事物和新潮流反應(yīng)最快的一個(gè)群體之一,越來(lái)越多的學(xué)生在學(xué)校里使用手機(jī),為了解手機(jī)在學(xué)生中的使用情況,對(duì)某學(xué)校高二年級(jí)名同學(xué)使用手機(jī)的情況進(jìn)行調(diào)查,針對(duì)調(diào)查中獲得的“每天平均使用手機(jī)進(jìn)行娛樂(lè)活動(dòng)的時(shí)間”進(jìn)行分組整理得到如下的數(shù)據(jù):
使用時(shí)間(小時(shí)) | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
所占比例 | 4% | 10% | 31% | 16% | 12% | 2% |
(1)求表中的值;
(2)從該學(xué)校隨機(jī)選取一名同學(xué),能否根據(jù)題目中所給信息估計(jì)出這名學(xué)生每天平均使用手機(jī)進(jìn)行娛樂(lè)活動(dòng)小于小時(shí)的概率?若能,請(qǐng)算出這個(gè)概率;若不能,請(qǐng)說(shuō)明理由;
(3)若從使用手機(jī)小時(shí)和小時(shí)的兩組中任取兩人,調(diào)查問(wèn)卷,看看他們對(duì)使用手機(jī)進(jìn)行娛樂(lè)活動(dòng)的看法,求這人都使用小時(shí)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直三棱柱中,,、、分別是線(xiàn)段、、的中點(diǎn),,,在線(xiàn)段上運(yùn)動(dòng),設(shè).
(1)證明:;
(2)是否存在點(diǎn),使得平面與平面所成的銳二面角的大小為?若存在,試確定點(diǎn)的位置;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某學(xué)生為了測(cè)試煤氣灶燒水如何節(jié)省煤氣的問(wèn)題設(shè)計(jì)了一個(gè)實(shí)驗(yàn),并獲得了煤氣開(kāi)關(guān)旋鈕旋轉(zhuǎn)的弧度數(shù)與燒開(kāi)一壺水所用時(shí)間的一組數(shù)據(jù),且作了一定的數(shù)據(jù)處理(如下表),得到了散點(diǎn)圖(如下圖).
表中,.
(1)根據(jù)散點(diǎn)圖判斷,與哪一個(gè)更適宜作燒水時(shí)間關(guān)于開(kāi)關(guān)旋鈕旋轉(zhuǎn)的弧度數(shù)的回歸方程類(lèi)型?(不必說(shuō)明理由)
(2)根據(jù)判斷結(jié)果和表中數(shù)據(jù),建立關(guān)于的回歸方程;
(3)若單位時(shí)間內(nèi)煤氣輸出量與旋轉(zhuǎn)的弧度數(shù)成正比,那么,利用第(2)問(wèn)求得的回歸方程知為多少時(shí),燒開(kāi)一壺水最省煤氣?
附:對(duì)于一組數(shù)據(jù),其回歸直線(xiàn)的斜率和截距的最小二乘法估計(jì)值分別為,
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2019年12月以來(lái),湖北省武漢市持續(xù)開(kāi)展流感及相關(guān)疾病監(jiān)測(cè),發(fā)現(xiàn)多起病毒性肺炎病例,均診斷為病毒性肺炎/肺部感染,后被命名為新型冠狀病毒肺炎(CoronaVirusDisease2019,COVID—19),簡(jiǎn)稱(chēng)“新冠肺炎”.下圖是2020年1月15日至1月24日累計(jì)確診人數(shù)隨時(shí)間變化的散點(diǎn)圖.
為了預(yù)測(cè)在未釆取強(qiáng)力措施下,后期的累計(jì)確診人數(shù),建立了累計(jì)確診人數(shù)y與時(shí)間變量t的兩個(gè)回歸模型,根據(jù)1月15日至1月24日的數(shù)據(jù)(時(shí)間變量t的值依次1,2,…,10)建立模型和.
(1)根據(jù)散點(diǎn)圖判斷,與哪一個(gè)適宜作為累計(jì)確診人數(shù)y與時(shí)間變量t的回歸方程類(lèi)型?(給出判斷即可,不必說(shuō)明理由)
(2根據(jù)(1)的判斷結(jié)果及附表中數(shù)據(jù),建立y關(guān)于x的回歸方程;
(3)以下是1月25日至1月29日累計(jì)確診人數(shù)的真實(shí)數(shù)據(jù),根據(jù)(2)的結(jié)果回答下列問(wèn)題:
時(shí)間 | 1月25日 | 1月26日 | 1月27日 | 1月28日 | 1月29日 |
累計(jì)確診人數(shù)的真實(shí)數(shù)據(jù) | 1975 | 2744 | 4515 | 5974 | 7111 |
(。┊(dāng)1月25日至1月27日這3天的誤差(模型預(yù)測(cè)數(shù)據(jù)與真實(shí)數(shù)據(jù)差值的絕對(duì)值與真實(shí)數(shù)據(jù)的比值)都小于0.1則認(rèn)為模型可靠,請(qǐng)判斷(2)的回歸方程是否可靠?
(ⅱ)2020年1月24日在人民政府的強(qiáng)力領(lǐng)導(dǎo)下,全國(guó)人民共同采取了強(qiáng)力的預(yù)防“新冠肺炎”的措施,若采取措施5天后,真實(shí)數(shù)據(jù)明顯低于預(yù)測(cè)數(shù)據(jù),則認(rèn)為防護(hù)措施有效,請(qǐng)判斷預(yù)防措施是否有效?
附:對(duì)于一組數(shù)據(jù)(,,……,,其回歸直線(xiàn)的斜率和截距的最小二乘估計(jì)分別為,.
參考數(shù)據(jù):其中,.
5.5 | 390 | 19 | 385 | 7640 | 31525 | 154700 | 100 | 150 | 225 | 338 | 507 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】手工藝是一種生活態(tài)度和對(duì)傳統(tǒng)的堅(jiān)持,在我國(guó)有很多手工藝品制作村落,村民的手工技藝世代相傳,有些村落制造出的手工藝品不僅全國(guó)聞名,還大量遠(yuǎn)銷(xiāo)海外.近年來(lái)某手工藝品村制作的手工藝品在國(guó)外備受歡迎,該村村民成立了手工藝品外銷(xiāo)合作社,為嚴(yán)把質(zhì)量關(guān),合作社對(duì)村民制作的每件手工藝品都請(qǐng)3位行家進(jìn)行質(zhì)量把關(guān),質(zhì)量把關(guān)程序如下:(i)若一件手工藝品3位行家都認(rèn)為質(zhì)量過(guò)關(guān),則該手工藝品質(zhì)量為A級(jí);(ii)若僅有1位行家認(rèn)為質(zhì)量不過(guò)關(guān),再由另外2位行家進(jìn)行第二次質(zhì)量把關(guān),若第二次質(zhì)量把關(guān)這2位行家都認(rèn)為質(zhì)量過(guò)關(guān),則該手工藝品質(zhì)量為B級(jí),若第二次質(zhì)量把關(guān)這2位行家中有1位或2位認(rèn)為質(zhì)量不過(guò)關(guān),則該手工藝品質(zhì)量為C級(jí);(iii)若有2位或3位行家認(rèn)為質(zhì)量不過(guò)關(guān),則該手工藝品質(zhì)量為D級(jí).已知每一次質(zhì)量把關(guān)中一件手工藝品被1位行家認(rèn)為質(zhì)量不過(guò)關(guān)的概率為,且各手工藝品質(zhì)量是否過(guò)關(guān)相互獨(dú)立.
(1)求一件手工藝品質(zhì)量為B級(jí)的概率;
(2)若一件手工藝品質(zhì)量為A,B,C級(jí)均可外銷(xiāo),且利潤(rùn)分別為900元,600元,300元,質(zhì)量為D級(jí)不能外銷(xiāo),利潤(rùn)記為100元.
①求10件手工藝品中不能外銷(xiāo)的手工藝品最有可能是多少件;
②記1件手工藝品的利潤(rùn)為X元,求X的分布列與期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】是雙曲線(xiàn)的右支上一點(diǎn),分別為雙曲線(xiàn)的左右焦點(diǎn),則的內(nèi)切圓的圓心橫坐標(biāo)為( )
A. B. 2C. D. 3
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),,使得對(duì)任意兩個(gè)不等的正實(shí)數(shù),都有恒成立.
(1)求的解析式;
(2)若方程有兩個(gè)實(shí)根,且,求證:.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com