6.如果執(zhí)行如圖的程序框圖,那么輸出的值是( 。
A.2015B.-1C.$\frac{1}{2}$D.2

分析 根據(jù)題意,模擬程序框圖的運(yùn)行過(guò)程,得出該循環(huán)中S的值是以3為周期的,計(jì)算出k=2014時(shí)S的值即可.

解答 解:模擬程序框圖的運(yùn)行過(guò)程,如下;
S=2,k=0,S=$\frac{1}{1-2}$=-1;
k=1,S=$\frac{1}{1-(-1)}$=$\frac{1}{2}$;
k=2,S=$\frac{1}{1-\frac{1}{2}}$=2;
k=3,…;
所以,該循環(huán)中S的值是以3為周期的,且
k=2014=3×671+1時(shí),S=$\frac{1}{2}$,
k=2015時(shí),終止循環(huán),輸出S=$\frac{1}{2}$.
故選:C.

點(diǎn)評(píng) 本題考查了程序框圖的應(yīng)用問(wèn)題,解題時(shí)應(yīng)模擬程序框圖的運(yùn)行過(guò)程,是基礎(chǔ)題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.kx2-kx+2>0恒成立,則k的取值范圍是[0,8).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.設(shè)函數(shù)f(x)=-3x+7,g(x)=lg(ax2-4x+a),若?x1∈R,?x2∈R,使f(x1)=g(x2),則實(shí)數(shù)a的取值范圍為[0,2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.已知定義在R上的函數(shù)f(x)、g(x)滿足$\frac{f(x)}{g(x)}={a^x}$,且f′(x)g(x)>f(x)g′(x),$\frac{f(1)}{g(1)}+\frac{f(-1)}{g(-1)}=\frac{10}{3}$,若cn=$\frac{f(n)}{g(n)}$,則數(shù)列{ncn}的前n項(xiàng)和Sn=$\frac{3+(2n-1)•{3}^{n+1}}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.設(shè)f(x)=$\frac{1+cos2x+sin2x}{\sqrt{2}sin(\frac{π}{2}+x)}$+asin(x+$\frac{π}{4}$)的最大值為3,則常數(shù)a=(  )
A.1B.a=1或a=-5C.a=-1或a=1D.a=±$\sqrt{7}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.已知三棱錐O-ABC中OA、OB、OC兩兩垂直,OC=3,OA=x,OB=y,若x+y=4,則三棱錐體積的最大值是2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.已知函數(shù)f(x)是(-∞,+∞)上的奇函數(shù),且f(x)的圖象關(guān)于直線x=1對(duì)稱,當(dāng)x∈[-1,0]時(shí),f(x)=-x,則f(2015)+f(2016)=( 。
A.-1B.0C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知二次函數(shù)f(x)=ax2+bx+1和g(x)=$\frac{bx-1}{{a}^{2}x+2b}$;
(1)f(x)為偶函數(shù),試判斷g(x)的奇偶性;
(2)若方程g(x)=x有兩個(gè)不相等的實(shí)根,當(dāng)a>0時(shí)判斷f(x)在(-1,1)上的單調(diào)性;
(3)若方程g(x)=x的兩實(shí)根為x1,x2,f(x)=0的兩根為x3,x4,求使x1<x2<x3<x4成立的a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.若直線y=kx+1(k∈R)與橢圓$\frac{x^2}{5}+\frac{y^2}{m}=1$恒有公共點(diǎn),求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案