13.已知p:|x-2|>3,q:x>5,則¬p是¬q成立的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

分析 根據(jù)充分條件和必要條件的定義進(jìn)行判斷即可.

解答 解:∵p:|x-2|>3,解得:x>5或x<-1,
而q:x>5,
∴p是q的必要不充分條件,
故¬p是¬q成立的充分不必要條件,
故選:A.

點(diǎn)評(píng) 本題主要考查充分條件和必要條件的判斷,根據(jù)不等式之間的關(guān)系是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.過(guò)橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$右焦點(diǎn)F2 的直線交橢圓于A,B 兩點(diǎn),F(xiàn)1為其左焦點(diǎn).當(dāng)直線AB⊥x軸時(shí),△AF1B為正三角形,且其周長(zhǎng)為$4\sqrt{3}$. 
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè) C 為直線x=2上的一點(diǎn),且滿足 CF2⊥AB,若$\overrightarrow{OA}=\overrightarrow{BC}$(其中O為坐標(biāo)原點(diǎn)),求四邊形OACB的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.已知等比數(shù)列{an}中,a1=1,公比q=2,設(shè)Tn=$\frac{1}{{a}_{1}{a}_{2}}+\frac{1}{{a}_{2}{a}_{3}}+\frac{1}{{a}_{3}{a}_{4}}+$…+$\frac{1}{{a}_{n}{a}_{n+1}},n∈{N}^{*}$,則下列判斷正確的是( 。
A.$\frac{1}{2}$<Tn≤$\frac{2}{3}$B.Tn>$\frac{1}{2}$C.$\frac{1}{2}$≤Tn<$\frac{2}{3}$.D.Tn≥$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知函數(shù)f(x)=aexx-2aex-$\frac{1}{2}$x2+x.
(1)求函數(shù)f(x)在(2,f(2))處切線方程;
(2)討論函數(shù)f(x)的單調(diào)區(qū)間;
(3)對(duì)任意x1,x2∈[0,1],f(x2)-f(x1)≤a+1恒成立,求a的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.下列函數(shù)求導(dǎo)數(shù),正確的個(gè)數(shù)是( 。
①(e2x)′=e2x
②[(x2+3)8]′=8(x2+3)•2x
③(ln2x)′=$\frac{2}{x}$;
④(a2x)′=2a2x-1
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.f(x)=$\frac{sinx}{x}$,則f′(π)的值為( 。
A.$-\frac{1}{π}$B.$\frac{1}{π}$C.$-\frac{1}{π^2}$D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.sin2(π+α)+cos(2π+α)cos(-α)-1的值是(  )
A.1B.2sin2αC.0D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.$\frac{{\sqrt{3}tan{{12}°}-3}}{{4{{cos}^2}{{12}°}sin{{12}°}-2sin{{12}°}}}$等于$-4\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.已知隨機(jī)變量X服從兩點(diǎn)分布,且P(X=1)=0.6,設(shè)ξ=3X-2,那么P(ξ=-2)=0.4.

查看答案和解析>>

同步練習(xí)冊(cè)答案