【題目】如圖,四邊形中, 為正三角形, , , 與中心點(diǎn),將沿邊折起,使點(diǎn)至點(diǎn),已知與平面所成的角為.
(1)求證:平面平面;
(2)求已知二面角的余弦值.
【答案】(1)見(jiàn)解析(2)
【解析】試題分析:(1)可證得平面,由面面垂直的判定定理得平面平面.
(2)過(guò)作的垂線(xiàn),垂足為,則垂直平面, ,以為后, 為軸,過(guò)垂直于平面向上的直線(xiàn)為軸建立如圖所示空間直角坐標(biāo)系,即可求得二面角的余弦值.
試題解析:
(1)易知為的中點(diǎn),則,
又平面,所以平面,
平面, 平面平面.
(2)過(guò)作的垂線(xiàn),垂足為,則垂直平面, ,
以為后, 為軸,過(guò)垂直于平面向上的直線(xiàn)為軸建立如圖所示空間直角坐標(biāo)系,則, , ,
易知平面的法向量為,
, ,
設(shè)平面的法向量為,
則由得,取,
,
二面角的余弦值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,A、B分別是橢圓的左、右端點(diǎn),F是橢圓的右焦點(diǎn),點(diǎn)P在橢圓上,且位于x軸上方,PA⊥PF.
(1)點(diǎn)P的坐標(biāo);
(2)設(shè)M是橢圓長(zhǎng)軸AB上的一點(diǎn),M到直線(xiàn)AP的距離等于MB,求橢圓上的點(diǎn)到點(diǎn)M的距離d的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在正三棱柱中,,點(diǎn)D是BC的中點(diǎn),點(diǎn)在上,且.
(1)求證: ∥平面;
(2)求證:平面⊥平面.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù), 為自然對(duì)數(shù)的底數(shù).
(Ⅰ)求曲線(xiàn)在處的切線(xiàn)方程;
(Ⅱ)關(guān)于的不等式在恒成立,求實(shí)數(shù)的取值范圍;
(Ⅲ)關(guān)于的方程有兩個(gè)實(shí)根, ,求證: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系內(nèi),動(dòng)點(diǎn)與兩定點(diǎn), 連線(xiàn)的斜率之積為.
(1)求動(dòng)點(diǎn)的軌跡的方程;
(2)設(shè)點(diǎn), 是軌跡上相異的兩點(diǎn).
(Ⅰ)過(guò)點(diǎn), 分別作拋物線(xiàn)的切線(xiàn), , 與兩條切線(xiàn)相交于點(diǎn),證明: ;
(Ⅱ)若直線(xiàn)與直線(xiàn)的斜率之積為,證明: 為定值,并求出這個(gè)定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若函數(shù)f(x)=tx2-(22t+60)x+144t(x>0).
(1)要使f(x)≥0恒成立,求t的最小值;
(2)令f(x)=0,求使t>20成立的x的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在正四棱錐中, 分別是
的中點(diǎn),動(dòng)點(diǎn)在線(xiàn)段上運(yùn)動(dòng)時(shí),下列結(jié)論中不恒成立的是( 。
A. 與異面 B. ∥面
C. ⊥ D. ∥
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)事件表示“關(guān)于的方程有實(shí)數(shù)根”.
(1)若、,求事件發(fā)生的概率;
(2)若、,求事件發(fā)生的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)(且為常數(shù)).
(1)當(dāng)時(shí),討論函數(shù)在的單調(diào)性;
(2)設(shè)可求導(dǎo)數(shù),且它的導(dǎo)函數(shù)仍可求導(dǎo)數(shù),則再次求導(dǎo)所得函數(shù)稱(chēng)為原函數(shù)的二階函數(shù),記為,利用二階導(dǎo)函數(shù)可以判斷一個(gè)函數(shù)的凹凸性.一個(gè)二階可導(dǎo)的函數(shù)在區(qū)間上是凸函數(shù)的充要條件是這個(gè)函數(shù)在的二階導(dǎo)函數(shù)非負(fù).
若在不是凸函數(shù),求的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com