【題目】如圖,在四棱錐中,,,為棱的中點(diǎn).

1)求證:平面;

2)試判斷與平面是否平行?并說明理由.

【答案】(1)見解析;(2)不平行,證明見解析

【解析】

1)可結(jié)合中位線定理證明,取PC的中點(diǎn)F,連接EF,BF,先證明四邊形為平行四邊形,可得,即可得證;

(2)可采用反證法,假設(shè)與平面平行,先證中點(diǎn),再通過相似三角形可得,即證出矛盾,故不成立

證明:(1)取PC的中點(diǎn)F,連接EF,BF,

,且,

又因?yàn)?/span>,,

所以,且,

所以四邊形為平行四邊形,

,

又因?yàn)?/span>平面平面,

所以平面.

2與平面不平行.

假設(shè),

設(shè),連結(jié)

則平面平面,

平面, 所以.

所以,在中有,

的中點(diǎn)可得,即.

因?yàn)?/span>,所以,這與矛盾,

所以假設(shè)錯(cuò)誤,與平面不平行.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)為奇函數(shù),為常數(shù).

1)求的值

2)判斷函數(shù)上的單調(diào)性,并說明理由;

3)若對于區(qū)間上的每一個(gè)值,不等式恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中國古代十進(jìn)制的算籌計(jì)數(shù)法,在世界數(shù)學(xué)史上是一個(gè)偉大的創(chuàng)造. 算籌實(shí)際上是一根根同樣長短的小木棍,用算籌表示數(shù)1~9的方法如圖:例如:163可表示為“”,27可表示為“”.現(xiàn)有6根算籌,用來表示不能被10整除的兩位數(shù),算籌必須用完,則這樣的兩位數(shù)的個(gè)數(shù)為_________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩所學(xué)校進(jìn)行同一門課程的考試,按照學(xué)生考試成績優(yōu)秀和不優(yōu)秀統(tǒng)計(jì)成績后,得到如下列聯(lián)表:

班級與成績列聯(lián)表

優(yōu)秀

不優(yōu)秀

總計(jì)

甲隊(duì)

80

40

120

乙隊(duì)

240

200

240

合計(jì)

320

240

560

(1)能否在犯錯(cuò)誤的概率不超過0.025的前提下認(rèn)為成績與學(xué)校有關(guān)系;

(2)采用分層抽樣的方法在兩所學(xué)校成績優(yōu)秀的320名學(xué)生中抽取16名同學(xué).現(xiàn)從這16名同學(xué)中隨機(jī)抽取3名運(yùn)同學(xué)作為成績優(yōu)秀學(xué)生代表介紹學(xué)習(xí)經(jīng)驗(yàn),記這3名同學(xué)來自甲學(xué)校的人數(shù)為,求的分布列與數(shù)學(xué)期望.附:

參考數(shù)據(jù):

,其中.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱柱ABC-A1B1C1中,AB=AC,A1在底面ABC的射影為BC的中點(diǎn),D是B1C1的中點(diǎn).證明:A1D⊥平面A1BC;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司計(jì)劃在報(bào)刊與網(wǎng)絡(luò)媒體上共投放30萬元的廣告費(fèi),根據(jù)計(jì)劃,報(bào)刊與網(wǎng)絡(luò)媒體至少要投資4萬元.根據(jù)市場前期調(diào)研可知,在報(bào)刊上投放廣告的收益與廣告費(fèi)滿足,在網(wǎng)絡(luò)媒體上投放廣告的收益與廣告費(fèi)滿足,設(shè)在報(bào)刊上投放的廣告費(fèi)為(單位:萬元),總收益為(單位:萬元).

(1)當(dāng)在報(bào)刊上投放的廣告費(fèi)是18萬元時(shí),求此時(shí)公司總收益;

(2)試問如何安排報(bào)刊、網(wǎng)絡(luò)媒體的廣告投資費(fèi),才能使總收益最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)曲線在點(diǎn)處的切線斜率為,求該切線方程;

(2)若函數(shù)在區(qū)間上恒成立,且存在使得,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知中心在原點(diǎn),焦點(diǎn)在軸上的橢圓,離心率,且橢圓過點(diǎn).

(1)求橢圓的方程;

(2)設(shè)橢圓左、右焦點(diǎn)分別為,過的直線與橢圓交于不同的兩點(diǎn),則的內(nèi)切圓的面積是否存在最大值?若存在,求出這個(gè)最大值及此時(shí)的直線方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司計(jì)劃購買2臺(tái)機(jī)器,該種機(jī)器使用三年后即被淘汰.機(jī)器有一易損零件,在購進(jìn)機(jī)器時(shí),可以額外購買這種零件作為備件,每個(gè)200.在機(jī)器使用期間,如果備件不足再購買,則每個(gè)500.現(xiàn)需決策在購買機(jī)器時(shí)應(yīng)同時(shí)購買幾個(gè)易損零件,為此搜集并整理了100臺(tái)這種機(jī)器在三年使用期內(nèi)更換的易損零件數(shù),得下面柱狀圖:

以這100臺(tái)機(jī)器更換的易損零件數(shù)的頻率代替1臺(tái)機(jī)器更換的易損零件數(shù)發(fā)生的概率,記表示2臺(tái)機(jī)器三年內(nèi)共需更換的易損零件數(shù),表示購買2臺(tái)機(jī)器的同時(shí)購買的易損零件數(shù).

)求的分布列;

)若要求,確定的最小值;

)以購買易損零件所需費(fèi)用的期望值為決策依據(jù),在之中選其一,應(yīng)選用哪個(gè)?

查看答案和解析>>

同步練習(xí)冊答案