11.曲線y=x(3lnx+1)在點(1,1)處的切線方程為(  )
A.y=-4x+3B.y=-4x-3C.y=4x+3D.y=4x-3

分析 先求出導(dǎo)函數(shù),然后利用導(dǎo)數(shù)的幾何意義求出切線斜率k=y′|x=1,利用點斜式即可寫出切線方程.

解答 解:∵y=x(3lnx+1),
∴y′=3lnx+4,則切線斜率k=y′|x=1=4,
∴在點(1,1)處的切線方程為:y-1=4(x-1),
即y=4x-3.
故選:D.

點評 本題考查利用導(dǎo)數(shù)研究曲線上某點切線方程,考查直線方程的求法,考查導(dǎo)數(shù)的幾何意義,屬基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知等差數(shù)列{an}的前n項和Sn,bn=$\frac{1}{S_n}$,且a3b3=$\frac{1}{2}$,S3+S5=21.
(1)求數(shù)列{bn}的通項公式.
(2)求證:b1+b2+b3+…+bn<2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知$|\overrightarrow a|=1$,$|\overrightarrow b|=2$.
(1)若$\overrightarrow a∥\overrightarrow b$,求$\overrightarrow a•\overrightarrow b$;   
(2)若$\overrightarrow a-\overrightarrow b$與$\overrightarrow a$垂直,求當k為何值時,$(k\overrightarrow a-\overrightarrow b)⊥(\overrightarrow a+2\overrightarrow b)$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.在△ABC中,若sinAcosB=1-cosAsinB,則△ABC為( 。
A.銳角三角形B.直角三角形C.鈍角三角形D.無法判定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知向量$\overrightarrow a=(-3,2),\overrightarrow b=(2,1),\overrightarrow c=(3,-1),t∈R$.
(1)若$\overrightarrow a-t\overrightarrow b與\overrightarrow c$共線,求實數(shù)t;
(2)求$|{\overrightarrow a+t\overrightarrow b}|$的最小值及相應(yīng)的t值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知向量($\overrightarrow{a}$+3$\overrightarrow$)⊥(7$\overrightarrow{a}$-5$\overrightarrow$)且($\overrightarrow{a}$-4$\overrightarrow$)⊥(7$\overrightarrow{a}$-2$\overrightarrow$),求向量$\overrightarrow{a}$,$\overrightarrow$的夾角θ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.設(shè)集合M={y|y=|cos2x-sin2x|,x∈R},N={x||x-$\frac{1}{i}$|<$\sqrt{2}$,x∈R},則M∩N=[0,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知橢圓C的兩個焦點分別為F1($-\sqrt{10}$,0),F(xiàn)2($\sqrt{10}$,0),且橢圓C過點P(3,2).
(Ⅰ)求橢圓C的標準方程;
(Ⅱ)與直線OP平行的直線交橢圓C于A,B兩點,求證:直線PA,PB與y軸圍成一個等腰三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.某同學(xué)參加學(xué)校自主招生3門課程的考試,假設(shè)該同學(xué)第一門課程取得優(yōu)秀成績概率為$\frac{2}{5}$,第二、第三門課程取得優(yōu)秀成績的概率分別為p,q(p<q),且不同課程是否取得優(yōu)秀成績相互獨立,記ξ為該生取得優(yōu)秀成績的課程數(shù),其分布列為
ξ0123
p$\frac{6}{125}$xy$\frac{24}{125}$
(Ⅰ)求該生至少有1門課程取得優(yōu)秀成績的概率及求p,q的值;
(Ⅱ)求該生取得優(yōu)秀成績課程門數(shù)的數(shù)學(xué)期望Eξ.

查看答案和解析>>

同步練習冊答案