學(xué)校游園活動(dòng)有這樣一個(gè)游戲項(xiàng)目:甲箱子里裝有3個(gè)白球、2個(gè)黑球,乙箱子里裝有1個(gè)白球、2個(gè)黑球,這些球除顏色外完全相同,每次游戲從這兩個(gè)箱子里各隨機(jī)摸出2個(gè)球,若摸出的白球不少于2個(gè),則獲獎(jiǎng).(每次游戲結(jié)束后將球放回原箱)
(Ⅰ)求在一次游戲中,
(i)摸出3個(gè)白球的概率;
(ii)獲獎(jiǎng)的概率;
(Ⅱ)求在兩次游戲中獲獎(jiǎng)次數(shù)的分布列.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知點(diǎn)P在曲線y=上,為曲線在點(diǎn)P處的切線的傾斜角,則的取值范圍是( )
A.[0,) B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
對(duì)于三次函數(shù),定義是的導(dǎo)函數(shù)的導(dǎo)函數(shù),若方程有實(shí)數(shù)解,則稱點(diǎn)為函數(shù)的“拐點(diǎn)”,可以證明,任何三次函數(shù)都有“拐點(diǎn)”,任何三次函數(shù)都有對(duì)稱中心,且“拐點(diǎn)”就是對(duì)稱中心,請(qǐng)你根據(jù)這一結(jié)論判斷下列命題:
①任意三次函數(shù)都關(guān)于點(diǎn)對(duì)稱:
②存在三次函數(shù)有實(shí)數(shù)解,點(diǎn)為函數(shù)的對(duì)稱中心;
③存在三次函數(shù)有兩個(gè)及兩個(gè)以上的對(duì)稱中心;
④若函數(shù),則
其中正確命題的序號(hào)為________ ____________(把所有正確命題的序號(hào)都填上).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
設(shè)函數(shù)在內(nèi)有定義,對(duì)于給定的正數(shù)K,定義函數(shù)
取函數(shù)。當(dāng)=時(shí),函數(shù)的單調(diào)遞增區(qū)間為
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知盒中裝有大小一樣,形狀相同的3個(gè)白球與7個(gè)黑球,每次從中任取一個(gè)球并不放回,則在第1次取到的白球條件下,第2次取到的是黑球的概率為 ( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
為了解某班學(xué)生喜愛(ài)打籃球是否與性別有關(guān),對(duì)本班50人進(jìn)行了問(wèn)卷調(diào)查得到了下表:
喜愛(ài)打籃球 | 不喜愛(ài)打籃球 | 合計(jì) | |
男生 | 25 | 10 | 35 |
女生 | 5 | 10 | 15 |
合計(jì) | 30 | 20 | 50 |
根據(jù)表中的數(shù)據(jù)你認(rèn)為喜愛(ài)打籃球與性別之間有關(guān)系的把握是
A. B. C. D.
參考數(shù)據(jù):.
臨界值表:
| 0.100 | 0.050 | 0.025 | 0.010 | 0.005 | 0.001 |
| 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com