分析 (1)利用等比數(shù)列與等差數(shù)列的通項(xiàng)公式即可得出.
(2)利用“累加求和”與“裂項(xiàng)求和”方法即可得出.
解答 解:(1)由題可知,${a_1}•{a_7}={a_3}^2$,得a1=2d…(2分)
因?yàn)镾5=20,所以a3=4,所以a1=2,d=1…(4分)
所以an=n+1…(6分)
(2)由(1)可知,bn+1-bn=n+1,
所以:b2-b1=2,b3-b2=3,b4-b3=4,…,bn-bn-1=n.
由累加法可得:${b_n}=\frac{n(n+1)}{2}$,所以$\frac{1}{b_n}=\frac{2}{n(n+1)}=2({\frac{1}{n}-\frac{1}{n+1}})$…(9分)
所以Tn=2$[(1-\frac{1}{2})$+$(\frac{1}{2}-\frac{1}{3})$+…+$(\frac{1}{n}-\frac{1}{n+1})]$=2$(1-\frac{1}{n+1})$=$\frac{2n}{n+1}$.…(12分)
點(diǎn)評(píng) 本題考查了等比數(shù)列與等差數(shù)列的通項(xiàng)公式、“累加求和”與“裂項(xiàng)求和”方法,考查了推理能力與計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 60° | B. | 45° | C. | 30° | D. | 以上都不對(duì) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 219-1 | B. | 221-2 | C. | 219+1 | D. | 221+2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (1,-3),-10 | B. | (1,-3),$\sqrt{10}$ | C. | (1,3),-10 | D. | (1,3),-$\sqrt{10}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 若a,b∈R,則$\frac{a}+\frac{a}≥2$ | B. | 若x<0,則x+$\frac{4}{x}$≥-2$\sqrt{x•\frac{4}{x}}$=-4 | ||
C. | 若ab≠0,則$\frac{b^2}{a}+\frac{a^2}≥a+b$ | D. | 若x<0,則2x+2-x>2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com