16.將函數(shù)f(x)=sinωx的圖象向右平移$\frac{π}{4}$個單位長度,所得圖象與g(x)=cosωx的圖象重合,則正數(shù)ω的最小值是6.

分析 利用函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,誘導(dǎo)公式,得出結(jié)論.

解答 解:將f(x)=sinωx(ω>0)的圖象向右平移$\frac{π}{4}$個單位長度后,可得y=sinω(x-$\frac{π}{4}$)=sin(ωx-$\frac{π}{4}$ω)的圖象,
根據(jù)所得圖象與函數(shù)y=cosωx的圖象重合,可得-ω•$\frac{π}{4}$=2kπ+$\frac{π}{2}$,即ω=-8k-2,k∈Z,
故當k=-1時,ω取得最小值為6,
故答案是:6.

點評 本題主要考查函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,誘導(dǎo)公式,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.隨意安排甲、乙、丙3人在3天假期中值班,每人值班1天,則:
(1)這3人的值班順序共有多少種不同的排列方法?
(2)這3人的值班順序中,甲在乙之前的排法有多少種?
(3)甲排在乙之前的概率是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.設(shè)a,b∈R,若p:2a<2b,q:a2<b2,則p是q的(  )
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.設(shè)l是一條直線,α,β,γ是不同的平面,則在下列命題中,真命題的個數(shù)是( 。﹤.
①如果α⊥β,那么α內(nèi)一定存在直線平行于β
②如果α不垂直于β,那么α內(nèi)一定不存在直線垂直于β
③如果α⊥γ,β⊥γ,α∩β=l,那么l⊥γ
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知集合A={x|-3<x<5},B={x|1<x≤7},則A∪B為( 。
A.(1,5)B.(-3,1)C.(5,7]D.(-3,7]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.在△ABC中,b=3,c=3$\sqrt{3}$,B=30°,則a=( 。
A.6B.3C.6或3D.6或4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知直角梯形ABCD中,AD⊥AB,AB∥DC,AB=2,DC=3,E為AB的中點,過E作EF∥AD,將四邊形AEFD沿EF折起使面AEFD⊥面EBCF.
(1)若G為DF的中點,求證:EG∥面BCD;
(2)若AD=2,試求多面體AD-BCFE體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2}-ax+4,x<1}\\{1+\frac{1}{2x},x≥1}\end{array}\right.$在R上單調(diào),則實數(shù)a的取值范圍為( 。
A.(-∞,2]B.[2,+∞)C.[2,$\frac{7}{2}$]D.[$\frac{7}{2}$,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.如果圓(x-a)2+(y-a)2=4上有且僅有兩個點到原點的距離為2,那么實數(shù)a的取值范圍為-2$\sqrt{2}$<a<2$\sqrt{2}$且a≠0.

查看答案和解析>>

同步練習(xí)冊答案