一個四面體的三視圖如右上圖所示,則該四面體的四個面中最大的面的面積為
 

考點(diǎn):由三視圖求面積、體積
專題:空間位置關(guān)系與距離
分析:根據(jù)三視圖,得到四面體的直觀圖,然后判斷四個面中的最大面積即可.
解答: 解:將該幾何體放入邊長為2的正方體中,由三視圖可知該四面體為D-BD1C1,
由直觀圖可知,最大的面為BDC1.在正三角形BDC1中,BD=2
2

所以面積S=
1
2
×(2
2
2×
3
2
=2
3

故答案為:2
3
點(diǎn)評:本題主要考查三視圖的識別和判斷,將幾何體放入正方體中去研究,是解決本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知兩定點(diǎn)A(-1,0)和B(1,0),動點(diǎn)P(x,y)在直線l:y=x+2上移動,橢圓C以A,B為焦點(diǎn)且經(jīng)過點(diǎn)P,則橢圓C的離心率的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

圓柱的側(cè)面展開圖是一個邊長為6π和4π的矩形,則該圓柱的底面積是( 。
A、24π2
B、36π2和16π2
C、36π
D、9π和4π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)正項等比數(shù)列{an},已知a2=2,a3a4a5=29
(1)求首項a1和公比q的值;
(2)若數(shù)列{bn}滿足bn=
1
n
[lga1+lga2+…lgan-1+lg(kan)],問是否存在正數(shù)k,使數(shù)列{bn}為等差數(shù)列?若存在,求k的值.若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知Sn是等比數(shù)列{an}的前n項和,S3+2,S9+2,S6+2成等差數(shù)列,且a2+a5=4.
(Ⅰ)求數(shù)列{an}的公比q;
(Ⅱ)設(shè)bn=log2|an|,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

.
x1y11
x2y21
x3y31
.
=0”是“(x1,y1)、(x2,y2)、(x3,y3)三點(diǎn)共線”的( 。
A、充分非必要條件
B、必要非充分條件
C、充要條件
D、既非充分又非必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的各項均為正數(shù),且其前n項和滿足2Sn=an2+an(n∈N*).
(1)證明:數(shù)列{an}是等差數(shù)列;
(2)設(shè)bn=
1
anan+1
,求數(shù)列{bn}的前n項和Tn,求證:Tn≤1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知x,y滿足
y≥x
x+y≤2
x≥a
,且目標(biāo)函數(shù)z=2x+y的最大值為M,最小值為m,若M=4m,則實數(shù)a的值為( 。
A、1
B、
1
3
C、
1
4
D、
1
8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某商場在促銷期間規(guī)定:商場內(nèi)所有商品按標(biāo)價的80%出售;同時,當(dāng)顧客在該商場內(nèi)消費(fèi)滿一定金額后,按如下方案獲得相應(yīng)金額的獎券:
消費(fèi)金額(元)的范圍[188,388](388,588](588,888](888,1188]
獲得獎券的金額(元)285888128
根據(jù)上述促銷方法,顧客在該商場購物可以獲得雙重優(yōu)惠.例如:購買標(biāo)價為400元的商品,則消費(fèi)金額為320元,然后還能獲得對應(yīng)的獎券金額為28元.于是,該顧客獲得的優(yōu)惠額為:400×0.2+28=108元.設(shè)購買商品得到的優(yōu)惠率=
購買商品獲得的優(yōu)惠額
商品的標(biāo)價

試問:
(1)購買一件標(biāo)價為1000元的商品,顧客得到的優(yōu)惠率是多少?
(2)當(dāng)商品的標(biāo)價為[100,600]元時,試寫出顧客得到的優(yōu)惠率y關(guān)于標(biāo)價x元之間的函數(shù)關(guān)系式.

查看答案和解析>>

同步練習(xí)冊答案