【題目】如圖,四邊形為等腰梯形, ,將沿折起,使得平面平面為的中點(diǎn),連接 (如圖2).
(1)求證: ;
(2)求直線與平面所成的角的正弦值.
【答案】(1)見解析;(2)
【解析】試題分析:(1)由邊的關(guān)系,可知是兩銳角為的等腰三角形, 是的直角三角形。所以由平面平面, 可證,即證。(2)取中點(diǎn),連接,易得兩兩垂直,以所在直線分別為軸、軸、軸建立空間直角坐標(biāo)系,由空間向量法可求的線面角。
試題解析:(1)證明:在圖中,作于,則,又
, 平面平面,且平面平面,
平面,
又平面,
.
(2)取中點(diǎn),連接,易得兩兩垂直,以所在直線分別為軸、軸、軸建立空間直角坐標(biāo)系,如圖所示,
,
設(shè)為平面的法向量,則
,即,
取,則.
設(shè)直線與平面所成的角為,
則,
直線與平面所成的角的正弦值為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對于任意x,[x]表示不超過x的最大整數(shù),如[1.1]=1,[﹣2.1]=﹣3.定義R上的函數(shù)f(x)=[2x]+[4x]+[8x],若A={y|y=f(x),0≤x≤1},則A中所有元素的和為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)是定義在(0,+∞)上的增函數(shù),且滿足f(xy)=f(x)+f(y),f(2)=1.
(1)求f(4)與f(8)的值;
(2)解不等式f(x)﹣f(x﹣2)>3.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C的左右頂點(diǎn)分別為A(﹣2,0),B(2,0),橢圓上除A、B外的任一點(diǎn)C滿足kACkBC=﹣ .
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)過點(diǎn)P(4,0)任作一條直線l與橢圓C交于不同的兩點(diǎn)M,N,在x軸上是否存在點(diǎn)Q,使得∠PQM+∠PQN=180°?若存在,求出點(diǎn)Q的坐標(biāo);若不存在,請說明現(xiàn)由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題共12分)
如圖,邊長為3的正方形所在平面與等腰直角三角形所在平面互相垂直, ,且, .
(Ⅰ)求證: 平面;
(Ⅱ)求二面角的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(1)求在區(qū)間上的極小值和極大值點(diǎn);
(2)求在(為自然對數(shù)的底數(shù))上的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知 、 、 是兩兩不等的實(shí)數(shù),點(diǎn) , ,點(diǎn) , ,則直線 的傾斜角為( )
A.30°
B.45°
C.60°
D.135°
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在底面半徑和高均為4的圓錐中,AB、CD是底面圓O的兩條互相垂直的直徑,E是母線PB的中點(diǎn),若過直徑CD與點(diǎn)E的平面與圓錐側(cè)面的交線是以E為頂點(diǎn)的拋物線的一部分,則該拋物線的焦點(diǎn)到圓錐頂點(diǎn)P的距離為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某幾何體的三視圖的形狀、大小如圖所示.
(1)求該幾何體的體積;
(2)設(shè)點(diǎn)D、E分別在線段AC、BC上,且DE∥平面ABB1A1 , 求證:DE∥A1B1 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com